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Continuous as Discrete. L&
Pr(X € [x,x+0]] ~ f(x)d

)
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for x,y € R where
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Note that Pr[X > t] = e *! for t > 0.



Some Properties



Some Properties

1. Expo is memoryless.



Some Properties

1. Expo is memoryless. Let X = Expo(1).



Some Properties

1. Expo is memoryless. Let X = Expo(4). Then, for s,t > 0,



Some Properties
1. Expo is memoryless. Let X = Expo(4). Then, for s,t > 0,

PriX>t+s|X>s] =



Some Properties

1. Expo is memoryless. Let X = Expo(4). Then, for s,t > 0,

Pr[X > t+ 5]

PriX>t+s|X> 9] PrIX > 5]



Some Properties

1. Expo is memoryless. Let X = Expo(4). Then, for s,t > 0,

Pr[X > t+ 5]
PriX > g]
efl(t+s)

e—lS

PriX>t+s|X> 9]



Some Properties

1. Expo is memoryless. Let X = Expo(4). Then, for s,t > 0,

Pr[X > t+ 5]
PriX > g]
efl(t+s)

e—lS

PriX>t+s|X> 9]

efiLt



Some Properties

1. Expo is memoryless. Let X = Expo(4). Then, for s,t > 0,

Pr[X > t+ 5]
PriX > g]
efl(t+s)

e—lS
= Pr[X>1{].

PriX>t+s|X>s] =

efiLt



Some Properties

1. Expo is memoryless. Let X = Expo(4). Then, for s,t > 0,

Pr[X > t+ 5]
PriX > g]
efl(t+s)

e—lS
= Pr[X>1{].

PriX>t+s|X>s] =

efiLt

‘Used is a good as new.



Some Properties

1. Expo is memoryless. Let X = Expo(4). Then, for s,t > 0,

Pr[X > t+ 5]
PriX > g]
efl(t+s)

e—lS
= Pr[X>1{].

PriX>t+s|X>s] =

efiLt

‘Used is a good as new.
2. Scaling Expo.



Some Properties

1. Expo is memoryless. Let X = Expo(4). Then, for s,t > 0,

Pr[X > t+ 5]
PriX > g]
efl(t+s)

e—lS
= Pr[X>1{].

PriX>t+s|X>s] =

efiLt

‘Used is a good as new.
2. Scaling Expo. Let X = Expo(A) and Y = aX for some a > 0.



Some Properties

1. Expo is memoryless. Let X = Expo(4). Then, for s,t > 0,

Pr[X > t+ 5]
PriX > g]
efl(t+s)

e—lS
= Pr[X>1{].

PriX>t+s|X>s] =

efiLt

‘Used is a good as new.
2. Scaling Expo. Let X = Expo(A) and Y = aX for some a> 0. Then

PriYy > 1] =



Some Properties

1. Expo is memoryless. Let X = Expo(4). Then, for s,t > 0,

Pr[X > t+ 5]
PriX > g]
efl(t+s)

e—lS
= Pr[X>1{].

PriX>t+s|X>s] =

efiLt

‘Used is a good as new.
2. Scaling Expo. Let X = Expo(A) and Y = aX for some a> 0. Then

PrilY>t] = PrlaX>t]=



Some Properties

1. Expo is memoryless. Let X = Expo(4). Then, for s,t > 0,

Pr[X > t+ 5]
PriX > g]
efiL(t+s)

e—lS
= Pr[X>1{].

PriX>t+s|X>s] =

efiLt

‘Used is a good as new.
2. Scaling Expo. Let X = Expo(A) and Y = aX for some a> 0. Then

PrilY>t] = PrlaX>t]=Pr[X>t/q



Some Properties

1. Expo is memoryless. Let X = Expo(4). Then, for s,t > 0,

Pr[X > t+ 5]
PriX > g]
efl(t+s)

e—lS
= Pr[X>1{].

PriX>t+s|X>s] =

efiLt

‘Used is a good as new.
2. Scaling Expo. Let X = Expo(A) and Y = aX for some a> 0. Then

PrilY>t] = PrlaX>t]=Pr[X>t/q
e—?L(t/a) _ ef(k/a)t _



Some Properties

1. Expo is memoryless. Let X = Expo(4). Then, for s,t > 0,

Pr[X > t+ 5]
PriX > g]
efiL(t+s)

e—lS
= Pr[X>1{].

PriX>t+s|X>s] =

efiLt

‘Used is a good as new.
2. Scaling Expo. Let X = Expo(A) and Y = aX for some a> 0. Then
PrilY>t] = PrlaX>t]=Pr[X>t/q
e MU/a) — =4/t _ pr[Z > {] for Z = Expo(2/a).



Some Properties

1. Expo is memoryless. Let X = Expo(4). Then, for s,t > 0,

Pr[X > t+ 5]
PriX > g]
efiL(t+s)

e—lS
= Pr[X>1{].

PriX>t+s|X>s] =

efiLt

‘Used is a good as new.
2. Scaling Expo. Let X = Expo(A) and Y = aX for some a> 0. Then

PrlY >t] = PrlaX>t]=Pr[X>1t/q]
e MU/a) — =4/t _ pr[Z > {] for Z = Expo(2/a).

Thus, ax Expo(A) = Expo(A/a).



Some Properties

1. Expo is memoryless. Let X = Expo(4). Then, for s,t > 0,

Pr[X > t+ 5]
PriX > g]
efiL(t+s)

e—lS
= Pr[X>1{].

PriX>t+s|X>s] =

efiLt

‘Used is a good as new.
2. Scaling Expo. Let X = Expo(A) and Y = aX for some a> 0. Then
PrlY >t] = PrlaX>t]=Pr[X>1t/q]
e MU/a) — =4/t _ pr[Z > {] for Z = Expo(2/a).
Thus, ax Expo(A) = Expo(A/a).
Also, Expo(A) = 1 Expo(1).



More Properties



More Properties

3. Scaling Uniform.



More Properties

3. Scaling Uniform. Let X = U[0,1] and Y = a+ bX where b > 0.



More Properties

3. Scaling Uniform. Let X = U[0,1] and Y = a+ bX where b > 0.
Then,

PriYe(y,y+98)] = Prla+bXe(y,y+96)]=



More Properties

3. Scaling Uniform. Let X = U[0,1] and Y = a+ bX where b > 0.
Then,

PriY e (y,y+98)] = Prla+bXe(y,y+38)]=Pr(Xe (y%avwz_a)]




More Properties

3. Scaling Uniform. Let X = U[0,1] and Y = a+ bX where b > 0.
Then,

PriY e (y,y+98)] = Prla+bXe(y,y+38)]=Pr(Xe (y%avwz_a)]

y—ay—a 6
= PI’[XE(ib ,7b +B)]:




More Properties

3. Scaling Uniform. Let X = U[0,1] and Y = a+ bX where b > 0.
Then,

y—ay+dé—a

)
- - ) 1
= Pr[Xe(y—ba,y—ba—kB)]:Eé, for

PrlYe(y,y+90)] = Prla+bXe(y,y+06)]=Pr[Xe(



More Properties

3. Scaling Uniform. Let X = U[0,1] and Y = a+ bX where b > 0.
Then,

_ S_

PriY € (y,y+6)] = Pr[a+bXe(y,y+8)]:Pr[Xe(y—ba7Lba)]
_ y-ay-a 6, 1 y-a
= PriXe( 5 b +b)]—b5,for0< 5 <1



More Properties

3. Scaling Uniform. Let X = U[0,1] and Y = a+ bX where b > 0.
Then,

y—ay+dé—a

PrlYe(y,y+90)] = Prla+bXe(y,y+06)]=Pr[Xe( b b )]
_ y-ay-a o6, 1 y-a
= PriXe( 5 b +b)]_b5, for0 < b <1

= 156, fora<y<a+b.



More Properties

3. Scaling Uniform. Let X = U[0,1] and Y = a+ bX where b > 0.
Then,

y—ay+dé—a

PrlYe(y,y+90)] = Prla+bXe(y,y+06)]=Pr[Xe( b b )]
B y—ay-—a § _1 y—a
= Pr[Xe(—b - +b)]_b5,for0<—b <1
= %6,fora<y<a+b.

Thus, fy(y) =1 fora<y <a+b.



More Properties

3. Scaling Uniform. Let X = U[0,1] and Y = a+ bX where b > 0.
Then,

y—-ay+dé-a

PrlYe(y,y+90)] = Prla+bXe(y,y+06)]=Pr[Xe( b b )]
B y—ay-—a § _1 y—a
= Pr[Xe(—b - +b)]_b5,for0<—b <1
= %6,fora<y<a+b.

Thus, fy(y) = 1 fora< y < a+b. Hence, Y = U[a,a+ b].



More Properties

3. Scaling Uniform. Let X = U[0,1] and Y = a+ bX where b > 0.
Then,

y—-ay+dé-a

PrlYe(y,y+90)] = Prla+bXe(y,y+06)]=Pr[Xe( b b )]
B y—ay-—a § _1 y—a
= Pr[Xe(—b - +b)]_b5,for0<—b <1
= %6,fora<y<a+b.

Thus, fy(y) = 1 fora< y < a+b. Hence, Y = U[a,a+ b].

Replacing b by b— a we see that, if X = U[0,1], then Y =a+ (b—a)X
is Ula, b].



Some More Properties



Some More Properties

4. Scaling pdf.



Some More Properties

4. Scaling pdf. Let fx(x) be the pdf of X and Y = a+ bX where
b>0.



Some More Properties

4. Scaling pdf. Let fx(x) be the pdf of X and Y = a+ bX where
b>0. Then

PriYe(y,y+9)] = Prlat+tbXe(y,y+9)]=



Some More Properties

4. Scaling pdf. Let fx(x) be the pdf of X and Y = a+ bX where
b>0. Then

y+6—a
)

PriYe(y.y+d)] = Pr[a+bXe(y,y+6)]:Pr[xe(y;b"",



Some More Properties

4. Scaling pdf. Let fx(x) be the pdf of X and Y = a+ bX where
b>0. Then

PriYe(y,y+38)] = Prla+bXe(y,y+6
a




Some More Properties

4. Scaling pdf. Let fx(x) be the pdf of X and Y = a+ bX where
b>0. Then

PriYe(y,y+38)] = Prla+bXe(y,y+6
a




Some More Properties

4. Scaling pdf. Let fx(x) be the pdf of X and Y = a+ bX where
b>0. Then

PrY € (y.y+38)] = Prla+bXe(y y—|—6)]:Pr[Xe(y;ba,y+i_a
- y-ay-a, 8, . y-a3d
= Pixe (24 D=5

Now, the left-hand side is



Some More Properties

4. Scaling pdf. Let fx(x) be the pdf of X and Y = a+ bX where
b>0. Then

PrY € (y.y+38)] = Prla+bXe(y y—|—6)]:Pr[Xe(y;ba,y+i_a
- y-ay-a, 8, . y-a3d
= Pixe (24 D=5

Now, the left-hand side is fy(y)d.



Some More Properties

4. Scaling pdf. Let fx(x) be the pdf of X and Y = a+ bX where
b>0. Then

PrlY e (y,y+906)] = Prla+bXe(y

= PriXe(Z—

Now, the left-hand side is fy(y)d. Hence,

1
fY(Y)Zfo —



Some More Properties

4. Scaling pdf. Let fx(x) be the pdf of X and Y = a+ bX where
b>0. Then

PrlY e (y,y+906)] = Prla+bXe(y

= PriXe(Z—

Now, the left-hand side is fy(y)d. Hence,

1
fY(Y)Zfo —



Expectation
Definition:



Expectation
Definition: The expectation of a random variable X with pdf f(x) is
defined as



Expectation
Definition: The expectation of a random variable X with pdf f(x) is
defined as o

E[X] = /_ xf(x)ax.



Expectation
Definition: The expectation of a random variable X with pdf f(x) is
defined as o

E[X] = / xf(x)ax.

Justification:



Expectation
Definition: The expectation of a random variable X with pdf f(x) is
defined as o

E[X] = / xf(x)ax.

Justification: Say X = né w.p. fx(nd)é for ne Z.



Expectation
Definition: The expectation of a random variable X with pdf f(x) is
defined as o

E[X] = / xf(x)ax.

Justification: Say X = né w.p. fx(nd)é for ne Z. Then,

E[X] =) (n8)Pr[X = né]

n



Expectation
Definition: The expectation of a random variable X with pdf f(x) is
defined as o

E[X] = / xf(x)ax.

Justification: Say X = né w.p. fx(nd)é for ne Z. Then,

E[X] =Y (n8)Pr[X = nd] =Y (n&)fx(nd)é

n n



Expectation
Definition: The expectation of a random variable X with pdf f(x) is
defined as o

E[X] = / Xty (x)dx.
Justification: Say X = né w.p. fx(nd)é for ne Z. Then,

2=

E[X] = ¥ (n8)Pr[X = nd] = Y (nd)fx(nd) = / Xty (x)dx.

n n -



Expectation
Definition: The expectation of a random variable X with pdf f(x) is
defined as o

E[X] = / xf(x)ax.

Justification: Say X = né w.p. fx(nd)é for ne Z. Then,

2=

E[X] = ¥ (n8)Pr[X = nd] = Y (nd)fx(nd) = / Xty (x)dx.

n n -

Indeed, for any g, one has [g(x)dx~Y ,g9(nd)s.



Expectation
Definition: The expectation of a random variable X with pdf f(x) is
defined as o

E[X] = / Xty (x)dx.
Justification: Say X = né w.p. fx(nd)é for ne Z. Then,

E[X] = ¥ (n8)Pr[X = nd] = Y (nd)fx(nd) = /w Xty (x)dx.

n n v

Indeed, for any g, one has [g(x)dx ~Y ,g(nd)8. Choose
9(x) = xfx(x).



Expectation
Definition: The expectation of a random variable X with pdf f(x) is
defined as o

E[X] = / xf(x)ax.

Justification: Say X = né w.p. fx(nd)é for ne Z. Then,

E[X] = ¥ (n8)Pr[X = nd] = Y (nd)fx(nd) = / " xfy(x)dx.

n n -

Indeed, for any g, one has [g(x)dx ~Y ,g(nd)8. Choose
9(x) = xfx(x).

AN
L

g(nd)d




Examples of Expectation



Examples of Expectation

1. X =U[0,1].



Examples of Expectation

1. X = U[0,1]. Then, fx(x) =



Examples of Expectation

1. X = U[0,1]. Then, fx(x)=1{0 < x < 1}.



Examples of Expectation

1. X = U[0,1]. Then, fx(x) =1{0 < x < 1}. Thus,

E[X] = / Z Xty (x)dx



Examples of Expectation

1. X = U[0,1]. Then, fx(x) =1{0 < x < 1}. Thus,

E[X]:/:;xfx(x)dx:/o1 x.1dx =



Examples of Expectation

1. X = U[0,1]. Then, fx(x) =1{0 < x < 1}. Thus,

E[X]Z/o‘:;xfx(x)dx:/o1 x.1dx = [%](1)_



Examples of Expectation

1. X = U[0,1]. Then, fx(x) =1{0 < x < 1}. Thus,

E[X]=/°;xfx(x)dx:/01 x.1dx = [%



Examples of Expectation

1. X = U[0,1]. Then, fx(x) =1{0 < x < 1}. Thus,

E[X]:/o‘:;xfx(x)dx:/o1 x.1dx = [%](1):5.

2. X = distance to 0 of dart shot uniformly in unit circle.



Examples of Expectation

1. X = U[0,1]. Then, fx(x) =1{0 < x < 1}. Thus,

E[X]:/o‘:;xfx(x)dx:/o1 x.1dx = [%](1):5.

2. X = distance to 0 of dart shot uniformly in unit circle. Then
fx(x)=2x1{0 < x <1}.



Examples of Expectation

1. X = U[0,1]. Then, fx(x) =1{0 < x < 1}. Thus,

E[X]:/o‘:;xfx(x)dx:/o1 x.1dx = [%](1):5.

2. X = distance to 0 of dart shot uniformly in unit circle. Then
fx(x)=2x1{0 < x <1}. Thus,

o0

E[X] = [ xfx(x)ax



Examples of Expectation

1. X = U[0,1]. Then, fx(x) =1{0 < x < 1}. Thus,

E[X]:/o‘:;xfx(x)dx:/o1 x.1dx = [%]0:5'

2. X = distance to 0 of dart shot uniformly in unit circle. Then
fx(x)=2x1{0 < x <1}. Thus,

E[X] = /:oxfx(x)dx = /01 X-2xdx =



Examples of Expectation

1. X = U[0,1]. Then, fx(x) =1{0 < x < 1}. Thus,

E[X]:/o‘lex(x)dx:/o1 x.1dx = [%]0:5'

2. X = distance to 0 of dart shot uniformly in unit circle. Then
fx(x)=2x1{0 < x <1}. Thus,

EX1= | xfx(x)dx = /01 X 2x0x = [2343]3 =



Examples of Expectation

1. X = U[0,1]. Then, fx(x) =1{0 < x < 1}. Thus,

E[X]:/o‘lex(x)dx:/o1 x.1dx = [%]0:5'

2. X = distance to 0 of dart shot uniformly in unit circle. Then
fx(x)=2x1{0 < x <1}. Thus,

” ! 2x3.1 2
E[X]:[mxfx(x)dxz[) x-2xdx =[]0 = 2.



Examples of Expectation



Examples of Expectation
3. X = Expo(2).



Examples of Expectation
3. X = Expo(L). Then, fx(x) = Ae **1{x >0}.



Examples of Expectation
3. X = Expo(L). Then, fx(x) = Ae=**1{x > 0}. Thus,

E[X] = / " xne M dx
0



Examples of Expectation
3. X = Expo(L). Then, fx(x) = Ae=**1{x > 0}. Thus,

E[X] = / " xhe M ax = — / " xde .
0 0



Examples of Expectation
3. X = Expo(L). Then, fx(x) = Ae=**1{x > 0}. Thus,

E[X] = / " xhe Max = — / " xde M.
0 0

Recall the integration by parts formula:

b , b
/au(x)dv(x) = [u(x)v(x)]af/a v(x)du(x)



Examples of Expectation

3. X = Expo(L). Then, fx(x) = Ae=**1{x > 0}. Thus,

ﬂm:/fmy“mzf/3@4&
0 0

Recall the integration by parts formula:

b

/bu(x)dv(x) = [u(x)v(x)]zf v(x)du(x)
) b
_ mmwmfmmwmfé

v(x)du(x).



Examples of Expectation
3. X = Expo(L). Then, fx(x) = Ae=**1{x > 0}. Thus,

E[X] = / " xhe Max = — / " xde M.
0 0

Recall the integration by parts formula:

b

/b u(x)dv(x) = [u(x)v(x)]zf v(x)du(x)
—  u(b)v(b)— u(a)v(a)— / VX)),

Thus,

/ xde ™™ = [xe M5 - / e X dx
0 0



Examples of Expectation
3. X = Expo(L). Then, fx(x) = Ae=**1{x > 0}. Thus,

E[X] = / " xhe Max = — / " xde M.
0 0

Recall the integration by parts formula:

b

/b u(x)dv(x) = [u(x)v(x)]zf v(x)du(x)
—  u(b)v(b)— u(a)v(a)— / VX)),
Thus,
/:xde*“ = [xe*“]}’j’—/om e X dx

1 /= —AX __
0—0+A/0 de X —



Examples of Expectation
3. X = Expo(L). Then, fx(x) = Ae=**1{x > 0}. Thus,

E[X] = / " xhe Max = — / " xde M.
0 0

Recall the integration by parts formula:

b

/b u(x)dv(x) = [u(x)v(x)]zf v(x)du(x)
—  u(b)v(b)— u(a)v(a)— / VX)),
Thus,
/:xde*“ = [xe*“]}’j’—/om e X dx

1 /= —AX __ 1
0—0+A/0 de = — .



Examples of Expectation
3. X = Expo(L). Then, fx(x) = Ae=**1{x > 0}. Thus,

E[X] = / " xhe Max = — / " xde M.
0 0

Recall the integration by parts formula:

b

/b u(x)dv(x) = [u(x)v(x)]zf v(x)du(x)
—  u(b)v(b)— u(a)v(a)— / VX)),
Thus,
/:xde*“ = [xe*“]}’j’—/om e X dx

1 /= —AX __ 1
0—0+A/0 de = — .

Hence, E[X] = 1.



Independent Continuous Random Variables



Independent Continuous Random Variables
Definition:



Independent Continuous Random Variables
Definition: The continuous RVs X and Y are independent if



Independent Continuous Random Variables
Definition: The continuous RVs X and Y are independent if

PriX € A,Y € B] = Pr[X € APr[Y € B],VA,B.



Independent Continuous Random Variables
Definition: The continuous RVs X and Y are independent if

PriX € A,Y € B] = Pr[X € APr[Y € B],VA,B.

Theorem:



Independent Continuous Random Variables
Definition: The continuous RVs X and Y are independent if

PriX € A,Y € B] = Pr[X € APr[Y € B],VA,B.

Theorem: The continuous RVs X and Y are independent if and only
if



Independent Continuous Random Variables
Definition: The continuous RVs X and Y are independent if

PriX € A,Y € B] = Pr[X € APr[Y € B],VA,B.

Theorem: The continuous RVs X and Y are independent if and only
if
fx v (x,¥) = Ix(xX)fy (y).



Independent Continuous Random Variables
Definition: The continuous RVs X and Y are independent if

PriX € A,Y € B] = Pr[X € APr[Y € B],VA,B.

Theorem: The continuous RVs X and Y are independent if and only
if
fx v (x,¥) = Ix(xX)fy (y).

Proof:



Independent Continuous Random Variables
Definition: The continuous RVs X and Y are independent if

PriX € A,Y € B] = Pr[X € APr[Y € B],VA,B.

Theorem: The continuous RVs X and Y are independent if and only
if
fx v (x,¥) = Ix(xX)fy (y).

Proof: As in the discrete case.



Independent Continuous Random Variables
Definition: The continuous RVs X and Y are independent if

PriX e A Y € Bl = Pr[X € A|Pr[Y € B],VA,B.
Theorem: The continuous RVs X and Y are independent if and only
if
fx v (x,¥) = Ix(xX)fy (y).

Proof: As in the discrete case.
Definition:



Independent Continuous Random Variables
Definition: The continuous RVs X and Y are independent if

PriX € A,Y € B] = Pr[X € APr[Y € B],VA,B.

Theorem: The continuous RVs X and Y are independent if and only
if
fx v (x,¥) = Ix(xX)fy (y).

Proof: As in the discrete case.

Definition: The continuous RVs Xj,..., X, are mutually independent
if



Independent Continuous Random Variables
Definition: The continuous RVs X and Y are independent if

PriX € A,Y € B] = Pr[X € APr[Y € B],VA,B.

Theorem: The continuous RVs X and Y are independent if and only
if
fx v(X.y) = Ix(X)fy (¥).
Proof: As in the discrete case.
Definition: The continuous RVs Xj,..., X, are mutually independent
if
Pr[Xi € Aq,...,Xn € Apg] = Pr[Xy € A1]--- Pr[Xn € An],YA4,..., An.



Independent Continuous Random Variables
Definition: The continuous RVs X and Y are independent if

PriX e A Y € Bl = Pr[X € A|Pr[Y € B],VA,B.
Theorem: The continuous RVs X and Y are independent if and only
if
fx.y(x,¥) = Ix(xX)fy (¥).

Proof: As in the discrete case.

Definition: The continuous RVs Xj,..., X, are mutually independent
if

Pr[Xi € A1,..., Xn € An] = Pr[Xi € At]--- Pr[Xn € An),YA1,..., An.

Theorem:



Independent Continuous Random Variables
Definition: The continuous RVs X and Y are independent if

PriX € A,Y € B] = Pr[X € APr[Y € B],VA,B.

Theorem: The continuous RVs X and Y are independent if and only
if
fx v(X.y) = Ix(X)fy (¥).
Proof: As in the discrete case.
Definition: The continuous RVs Xj,..., X, are mutually independent
if
Pr[Xi € Aq,...,Xn € Apg] = Pr[Xy € A1]--- Pr[Xn € An],YA4,..., An.

Theorem: The continuous RVs Xj,..., X, are mutually independent if
and only if



Independent Continuous Random Variables
Definition: The continuous RVs X and Y are independent if

PriX € A,Y € B] = Pr[X € APr[Y € B],VA,B.

Theorem: The continuous RVs X and Y are independent if and only
if
fx.y(x,¥) = Ix(xX)fy (¥).

Proof: As in the discrete case.
Definition: The continuous RVs Xj,..., X, are mutually independent
if

Pr[Xi € Aq,...,Xn € Apg] = Pr[Xy € A1]--- Pr[Xn € An],YA4,..., An.

Theorem: The continuous RVs Xj,..., X, are mutually independent if
and only if

fX(X17' . 7Xn) = fX1 (X1)' o an(Xn)-



Independent Continuous Random Variables
Definition: The continuous RVs X and Y are independent if

PriX € A,Y € B] = Pr[X € APr[Y € B],VA,B.

Theorem: The continuous RVs X and Y are independent if and only
if
fx v(X.y) = Ix(X)fy (¥).
Proof: As in the discrete case.
Definition: The continuous RVs Xj,..., X, are mutually independent
if
Pr[Xi € Aq,...,Xn € Apg] = Pr[Xy € A1]--- Pr[Xn € An],YA4,..., An.

Theorem: The continuous RVs Xj,..., X, are mutually independent if
and only if
fX(X1 yree 7Xn) = fX1 (X1 ) e an(Xn)-

Proof:



Independent Continuous Random Variables
Definition: The continuous RVs X and Y are independent if

PriX € A,Y € B] = Pr[X € APr[Y € B],VA,B.

Theorem: The continuous RVs X and Y are independent if and only
if
fx v(X.y) = Ix(X)fy (¥).
Proof: As in the discrete case.
Definition: The continuous RVs Xj,..., X, are mutually independent
if
Pr[Xi € Aq,...,Xn € Apg] = Pr[Xy € A1]--- Pr[Xn € An],YA4,..., An.

Theorem: The continuous RVs Xj,..., X, are mutually independent if
and only if
fX(X1 yree 7Xf‘l) = fX1 (X1 ) e an(Xn)-

Proof: As in the discrete case.



Meeting at a Restaurant



Meeting at a Restaurant

Two friends go to a restaurant independently uniformly at random
between noon and 1pm.



Meeting at a Restaurant

Two friends go to a restaurant independently uniformly at random
between noon and 1pm.

They agree they will wait for 10 minutes.



Meeting at a Restaurant

Two friends go to a restaurant independently uniformly at random
between noon and 1pm.

They agree they will wait for 10 minutes. What is the probability they
meet?



Meeting at a Restaurant

Two friends go to a restaurant independently uniformly at random
between noon and 1pm.

They agree they will wait for 10 minutes. What is the probability they
meet?

4

1

5/6

0 1/6 X 1



Meeting at a Restaurant

Two friends go to a restaurant independently uniformly at random
between noon and 1pm.

They agree they will wait for 10 minutes. What is the probability they
meet?

, Here, (X, Y) are the times when
1 the friends reach the restaurant.

5/6

0 l’.-" 6 X 1



Meeting at a Restaurant

Two friends go to a restaurant independently uniformly at random
between noon and 1pm.

They agree they will wait for 10 minutes. What is the probability they
meet?

Here, (X, Y) are the times when
L the friends reach the restaurant.

5/6 The shaded area are the pairs
where | X — Y| < 1/6,

0 l’.-" 6 X 1



Meeting at a Restaurant

Two friends go to a restaurant independently uniformly at random
between noon and 1pm.

They agree they will wait for 10 minutes. What is the probability they
meet?

Here, (X, Y) are the times when
L the friends reach the restaurant.

5/6 The shaded area are the pairs
where | X — Y| < 1/6, i.e., such
that they meet.

0 l’.-" 6 X 1



Meeting at a Restaurant

Two friends go to a restaurant independently uniformly at random
between noon and 1pm.

They agree they will wait for 10 minutes. What is the probability they
meet?

Here, (X, Y) are the times when
L the friends reach the restaurant.

5/6 The shaded area are the pairs
where | X — Y| < 1/6, i.e., such
that they meet.

The complement is the sum of two
Y rectangles.

0 l’.-" 6 X 1



Meeting at a Restaurant

Two friends go to a restaurant independently uniformly at random
between noon and 1pm.

They agree they will wait for 10 minutes. What is the probability they
meet?

Here, (X, Y) are the times when
L the friends reach the restaurant.

5/6 The shaded area are the pairs
where | X — Y| < 1/6, i.e., such
that they meet.

The complement is the sum of two

Y rectangles. When you put them
together, they form a square

0 l’.-" 6 X 1



Meeting at a Restaurant

Two friends go to a restaurant independently uniformly at random
between noon and 1pm.

They agree they will wait for 10 minutes. What is the probability they
meet?

, Here, (X, Y) are the times when
1 the friends reach the restaurant.

5/6 The shaded area are the pairs
where | X — Y| < 1/6, i.e., such
that they meet.

The complement is the sum of two
rectangles. When you put them
together, they form a square with

0 16 . ) sides 5/6.




Meeting at a Restaurant

Two friends go to a restaurant independently uniformly at random
between noon and 1pm.

They agree they will wait for 10 minutes. What is the probability they
meet?

, Here, (X, Y) are the times when
1 the friends reach the restaurant.

5/6 The shaded area are the pairs
where | X — Y| < 1/6, i.e., such
that they meet.

The complement is the sum of two
rectangles. When you put them
together, they form a square with

0 16 . ) sides 5/6.

Y

Thus, Primeet] =1—(3)2 =



Meeting at a Restaurant

Two friends go to a restaurant independently uniformly at random
between noon and 1pm.

They agree they will wait for 10 minutes. What is the probability they
meet?

, Here, (X, Y) are the times when
1 the friends reach the restaurant.

5/6 The shaded area are the pairs
where | X — Y| < 1/6, i.e., such
that they meet.

The complement is the sum of two
rectangles. When you put them
together, they form a square with

0 16 . ) sides 5/6.

Y

Thus, Primeet] =1—(2)2 = 3L

(o))



Breaking a Stick



Breaking a Stick

You break a stick at two points chosen independently uniformly at
random.



Breaking a Stick

You break a stick at two points chosen independently uniformly at
random.

What is the probability you can make a triangle with the three pieces?



Breaking a Stick

You break a stick at two points chosen independently uniformly at
random.

What is the probability you can make a triangle with the three pieces?




Breaking a Stick

You break a stick at two points chosen independently uniformly at
random.

What is the probability you can make a triangle with the three pieces?

A B C Let X, Y be the two break points along the
: [0, 1] stick.




Breaking a Stick

You break a stick at two points chosen independently uniformly at
random.

What is the probability you can make a triangle with the three pieces?

A B C Let X, Y be the two break points along the
: ; * : [0, 1] stick.

A triangle if
A<B+C,B<A+C,and C<A+B.




Breaking a Stick

You break a stick at two points chosen independently uniformly at
random.

What is the probability you can make a triangle with the three pieces?

A B C Let X, Y be the two break points along the
: ; * : [0, 1] stick.

A triangle if
A<B+C,B<A+C,and C<A+B.

If X <Y, this means
X < 0.5,




Breaking a Stick

You break a stick at two points chosen independently uniformly at
random.

What is the probability you can make a triangle with the three pieces?

A B C Let X, Y be the two break points along the
: ; * : [0, 1] stick.

A triangle if
A<B+C,B<A+C,and C<A+B.

If X <Y, this means
X <05, Y<X+.5




Breaking a Stick

You break a stick at two points chosen independently uniformly at
random.

What is the probability you can make a triangle with the three pieces?

A B C Let X, Y be the two break points along the
: ; * : [0, 1] stick.

A triangle if
A<B+C,B<A+C,and C<A+B.

If X <Y, this means
X<05 Y<X+.5 Y>0.5.




Breaking a Stick

You break a stick at two points chosen independently uniformly at
random.

What is the probability you can make a triangle with the three pieces?

A B C Let X, Y be the two break points along the
: ; * : [0, 1] stick.
A triangle if
A<B+C,B<A+C,and C<A+B.

If X <Y, this means
X<05 Y<X+.5 Y>0.5.
This is the blue triangle.




Breaking a Stick

You break a stick at two points chosen independently uniformly at
random.

What is the probability you can make a triangle with the three pieces?

A B C Let X, Y be the two break points along the
: ; * : [0, 1] stick.
A triangle if
A<B+C,B<A+C,and C<A+B.

If X <Y, this means
X<05 Y<X+.5 Y>0.5.
This is the blue triangle.

If X > Y, get red triangle, by symmetry.




Breaking a Stick

You break a stick at two points chosen independently uniformly at
random.

What is the probability you can make a triangle with the three pieces?

A B C Let X, Y be the two break points along the
: ; * : [0, 1] stick.
A triangle if
A<B+C,B<A+C,and C<A+B.

If X <Y, this means
X<05 Y<X+.5 Y>0.5.
This is the blue triangle.

If X > Y, get red triangle, by symmetry.




Breaking a Stick

You break a stick at two points chosen independently uniformly at
random.
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A B C Let X, Y be the two break points along the
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0 X 1
Thus, Pr[make triangle] = 1/4.
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Maximum of ni.i.d. Exponentials

Let Xi,...,X, beiid. Expo(1). Define Z = max{Xi, Xz, ..., X}
Calculate E[Z].
We use a recursion. The key idea is as follows:

Z=min{Xy,..., Xp}+V
where V is the maximum of n—1 i.i.d. Expo(1). This follows from the
memoryless property of the exponential.
Let then A, = E[Z]. We see that

An = E[min{Xj,....,Xn} +An_1
1

= E +An-1
because the minimum of Expo is Expo with the sum of the rates.
Hence,

1 1
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Quantization Noise

We saw that E[Z2] = 1272("1) and E[X?] = }.

The signal to noise ratio (SNR) is the power of the signal divided by
the power of the noise.

Thus,
SNR = 22(n+1)

Expressed in decibels, one has
SNR(dB) = 10logyo(SNR) =20(n+1)log4y(2) = 6(n+1).
For instance, if n= 16, then SNR(dB) ~ 112dB.
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Geometric and Exponential

The geometric and exponential distributions are similar. They are
both memoryless.

Consider flipping a coin every 1/N second with Pr[H] = p/N, where
N>1.

Let X be the time until the first H.
Fact: X ~ Expo(p).
Analysis: Note that
Pr[X>1t] = Prlfirst Ntflips are tails]
(1 M = exp{~pt}.

Indeed, (1— &)V ~ exp{-a}.
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Continuous RVs are essentially the same as discrete RVs
Think that X ~ x with probability fx(x)e

v

v

Sums become integrals, ...

v

The exponential distribution is magical: memoryless.



