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Agenda

Congratulations on your first midterm! Course staff is busy grading
them right now and the grades should be ready by tomorrow
morning.

Today: A practical application of modular arithmetic: RSA encryption.
You probably use this every day.
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Motivation

Let’s say I want to open a bank account online. I need to tell the
bank my social security number.
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Motivation

Let’s say I want to open a bank account online. I need to tell the
bank my social security number.

We want a “private channel” where I can send the bank my info, safe
from prying eyes.

A “private channel” to the bank that I can securely transmit info on.
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Motivation

Let’s say I want to open a bank account online. I need to tell the
bank my social security number.

Unfortunately, real life looks more like this. How do I form a private
channel to the bank if there’s someone snooping on my connection?
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XOR

Consider the bit operation xor (denoted ⊕): A⊕B= 1 if and only if
exactly one of A, B are 1.

Truth table?

A B A⊕B
0 0 0
0 1 1
1 0 1
1 1 0

Is A⊕B equal to B⊕A? Yes!

What’s A⊕A? 0
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One-Time Pad

Simple encryption scheme (”one time pad”): given a plaintext we
want to encrypt (e.g. SSN, represented as a bitstring) and a key of
equal length, xor each bit of the plaintext with the corresponding bit
of the key to get a ciphertext.

How do we decrypt? Notice that x⊕y⊕ x= y⊕ x⊕ x= y⊕0= y. So:
just xor the ciphertext with the key, bitwise, to get plaintext back.
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Example/Live Demo
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OTP: Security

Why is OTP secure?

Suppose I have the ciphertext c, but not the key or the plaintext. Can
I find out anything about the plaintext? No!

For every possible plaintext p (of the same length as c), there exists
a key k such that c= p⊕k. Why? Just let k= c⊕p.
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What’s Wrong with OTP?

Need a really long key. Same length as input! Fine for SSN, credit
card numbers, maybe not so fine if you’re trying to transmit the
plans for the Death Star...

Can’t reuse key twice without leaking info. Let’s say I send p1⊕k and
p2⊕k. Then a spy can easily figure out what p1⊕p2 is! Information
leaked!

Needs a key to be shared before the transmission is done. If I need
to walk into bank to share a secret key before sending them my SSN,
why not just give my SSN to them when I walk in?
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Addressing OTP Shortcomings

Long keys can be addressed with ”pseudorandom generators” that
take short random strings and turn them into longer strings that
”look random”.

Beyond the scope of this course (CS276 and current
workshop at the Simons Institute).

Address the security concerns with public key crypto. RSA is an
algorithm for that.

Big idea: the bank gives everyone a mathematical safe that they can
put stuff into, but only the bank can unlock.
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The RSA Algorithm

Formally: bank broadcasts a public key that anyone can use to
encrypt data with. It also has (and keeps secret) a private key that
they can use to decrypt data that’s been encrypted with the public
key.

Key generation: Bank picks two large primes, p and q, and lets
N= pq. It also chooses some e relatively prime to (p− 1)(q− 1)
(normally small, say, 3), and then computes d= e−1
mod (p− 1)(q− 1).

Puts N= pq and e on their website. Locks up d deep in the bowels of
corporate HQ.

Encrypt: Given plaintext x (say, an SSN), I compute the ciphertext
c= E(x) =mod(xe,N) and sends it to the bank (over an open channel
that could be snooped upon).

Decrypt: Bank computes D(c) =mod(cd,N). We’ll show (next slide)
this actually gives the plaintext x back.
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Correctness of RSA

Theorem: For the encryption/decryption protocol on the previous
slide, D(E(x)) = x (mod N) for all x ∈ {0,1, ...n− 1}.

Proof: It suffices to show: (xe)d ≡ x (mod n) for all x ∈ {0,1, ...n− 1}.

Consider the exponent ed. We kow that ed≡ 1 mod (p− 1)(q− 1) by
definition, so ed= 1+k(p− 1)(q− 1) for some integer k. Therefore,

xed− x= x1+k(p−1)(q−1)− x= x(xk(p−1)(q−1)− 1) .

Suffices to show that this expression is 0 mod N for all x, i.e. that it’s
a multiple of both p and q. We will show it’s a multiple of p.

• Case 1: p divides x. Then obviously it also divides
x(xk(p−1)(q−1)− 1), as desired.

• Case 2: p doesn’t divide x. Then xk(p−1)(q−1) = (xp−1)k(q−1).
Applying Fermat’s little theorem, xp−1 ≡ 1 (mod p). So
xk(p−1)(q−1)− 1≡ 1k(q−1)− 1≡ 0 (mod p), so x(xk(p−1)(q−1)− 1)
must be a multiple of p.

Argument for q is exactly the same. Therefore p|(xed− x). �
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Implementation Concerns

Key generation: Bank picks two large primes, p and q, and lets
N= pq. It also chooses some e relatively prime to (p− 1)(q− 1)
(normally small, say, 3), and then computes d= e−1
mod (p− 1)(q− 1).

Puts N= pq and e on their website. Locks up d deep in the bowels of
corporate HQ.

Encrypt: Given plaintext x (say, an SSN), I compute the ciphertext
c= E(x) =mod(xe,N) and sends it to the bank (over an open channel
that could be snooped upon).

Decrypt: Bank computes D(c) =mod(cd,N). We’ll show (next slide)
this actually gives the plaintext x back.
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this actually gives the plaintext x back.

11



Implementation Concerns: Prime-finding

How do we find large primes p and q?

We don’t know whether or not there’s an algorithm that’s
guaranteed to find a prime efficiently at each time! But... we can pick
random numbers, and test that they’re prime.

Prime number theorem: Let π(x) denote the number of prime
numbers less than or equal to x. Then as x goes to infinity, π(x)
converges to x/ lnx. (Proof is far beyond the scope of this course.)

Main takeaway: primes aren’t too uncommon. Pick a bunch of
random numbers and one of them will probably be a prime.

How do we test for primality efficiently? Lots of tests that will tell
you “this is definitely not a prime” or “this may or may not be a
prime” very quickly - simplest is based on Fermat’s little theorem!
Efficient algorithm for distinguishing between “this is not a prime”
and “this definitely is a prime” was found in 2002 by Agrawal, Kayal,
Saxena - major breakthrough!
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Implementation Concerns: Repeated Squaring

How about encrypting and decrypting? We need to do some pretty
big exponents.

One way to do this efficiently: repeated squaring. Keep squaring the
base and simplifying (since multiplication can easily be simplified
under congruence).

Example: compute 5143 (mod 77).

511 ≡ 51 (mod 77)
512 = (51)∗ (51) = 2601≡ 60 (mod 77)
514 = (512)∗ (512) = 60∗60= 3600≡ 58 (mod 77)
518 = (514)∗ (514) = 58∗58= 3364≡ 53 (mod 77)
5116 = (518)∗ (518) = 53∗53= 2809≡ 37 (mod 77)
5132 = (5116)∗ (5116) = 37∗37= 1369≡ 60 (mod 77)

5132 ·518 ·512 ·511 = (60)∗ (53)∗ (60)∗ (51)≡ 2 (mod 77) .
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Implementation Concerns: Repeated Squaring II

To compute xy (mod n):

1. xy: Compute x1,

x2,x4, . . . ,x2⌊logy⌋ .
2. Multiply together xi where the (log(i))th bit of y (in binary) is 1.
Example: 43= 101011 in binary.

x43 = x32 ∗ x8 ∗ x2 ∗ x1

.

How many multiplications required? O(logy). Much faster than
multiplying y times!
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Security of RSA

Why is RSA secure? Even without the private key, we have enough
information to decrypt anything we see (we could just take the
public key, encrypt every possible string representable as a number
under N, and see which one matches the ciphertext).

The security RSA, like all almost all encryption schemes, relies on
hardness assumptions. We need to assume something is hard in
order to show that decrypting something, or even getting some
information about the plaintext, even with full information, is hard.

15
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Hardness Assumptions

What hardness assumptions are we making for RSA?

“Given N, e, c= xe (mod N), there is no efficient algorithm for
determining x.”

How would the someone snooping on our connection guess x?

• Brute force: try encrypting every possible string x. There are too
many values of x: 2|x|. Can’t do this efficiently*

• Factoring: Try determining d by factoring N into p and q, which
would allow our spy to compute d the same way the bank did.
Factoring large numbers is considered impossible to do
efficiently.

• Direct computation of (p− 1)(q− 1). Reduces to factoring. Why?
If you compute (p− 1)(q− 1) = pq−p−q+ 1, you now know what
p+q and pq are. Trivial to solve for p and q from here.

Security of breaking RSA requires on hardness of factoring large
integers.
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RSA in Practice: Padding

SSNs are not particularly long. 9 digits. 1 billion possible SSNs.

An iPhone 7 has a chip that clocks in at 2.34 GHz... wouldn’t be too
hard to encrypt every single SSN with a single public key and then
run a lookup table.

To address this: “pad” the plaintext by appending extra junk bits to it
to make it longer. Determining which junk bits would be secure is
not trivial!1

1https://en.wikipedia.org/wiki/Optimal_asymmetric_encryption_padding
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RSA in Practice: Replay Attacks, Nonces

Replay attack: if someone know your ciphertext, he can always send
it again...

Use a nonce: a one-time use string - that is concatenated to
the plaintext before encryption.
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RSA in Practice: MITM

RSA allows you to protect your communication from snooping.

It
does not protect your communication from tampering (“man in the
middle”, or MITM attacks).

🔑

🔑
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Protecting against MITM: Take One

Naive approach: store all the public keys in your computer (let’s say
you trust the computer manufacturer. Have it done at the factory).

Problems?

How many websites are there where you want security? Banks,
email, health... anything with a login, basically... you’d need a ton of
disk space!

What if you want to sign up for an account at a bank that was
founded after you got your computer? Where do you get their key?
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RSA Signatures

Another way to do it: RSA signatures. Idea: instead of storing every
single public key with you, store the public key of somebody you
trust - the “certificate authority”. The CA can then cryptographically
endorse other keys to tell you “hey, it’s really them”.

21



RSA Signatures

Another way to do it: RSA signatures. Idea: instead of storing every
single public key with you, store the public key of somebody you
trust - the “certificate authority”. The CA can then cryptographically
endorse other keys to tell you “hey, it’s really them”.

21



RSA Signatures

Vanguard has a certificate C that says “I’m Vanguard, and my public
key is Kb.”

Wants to have it signed by Verisign: “I’m Verisign, and I endorse this
message.” Verisign has an RSA public/private key pair: KV = (N,e),
kv = d, N= pq. Verisign’s public key, Kv, is known by end users
(preloaded into browsers and computers).

Verisign signature of C: Sv(C) = D(C,kv) = Cd (mod N).

Browser receives C, the certificate, and Sv(C), the signature. Check:
Does E(Sv(C),Kv) equal C? It should be, since

E(Sv(C),KV = (Sv(C))e = (Cd)e = Cde = C (mod N)

What about security? Making the signature requires computing
D(C,kv) which is hard without kv. Same security analysis of RSA
applies!
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Whom do you trust?

You need to trust the browser vendor/computer manufacturer that
gave you the list of trusted CAs initially and trust the CA to only sign
legitimate certificates.
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What happens when trust breaks down?

24



What happens when trust breaks down?

24



What happens when trust breaks down?

24



Questions?
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