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We have seen a chain with one stationary,
and a chain with many.

When is here just one?
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Definition A Markov chain is irreducible if it can go from every state i
to every state j (possibly in multiple steps).

Examples:
0.3 0.3
0.2 @—\Oj 1 Q7
o | | & 0
0.8
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[A] is not irreducible. It cannot go from (2) to (1).
[B] is not irreducible. It cannot go from (2) to (1).

[Clis irreducible. It can go from every i to every j.

If you consider the graph with arrows when P(i,j) > 0, irreducible
means that there is a single connected component.
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Existence and uniqueness of Invariant Distribution

Theorem A finite irreducible Markov chain has one and only one
invariant distribution.

That is, there is a unique positive vector = = [(1),..., m(K)] such that
rP=mand Y n(k)=1.

Ok. Now.
Only one stationary distribution if irreducible (or connected.)
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Theorem Let X, be an irreducible Markov chain with invariant
distribution x.

Then, for all J,

n—1
1 Y {Xn=1i}—n(i), as n— co.
nm:O

The left-hand side is the fraction of time that X;;; = i during steps
0,1,...,n—1. Thus, this fraction of time approaches 7(/).

Proof: Lecture note 24 gives a plausibility argument.
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Example 1:

P = [ 10 ] aP=7= 7= [1}.-".2..1;"]2:

The fraction of time in state 1 converges to 1/2, which is 7(1).
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Question: Assume that the MC is irreducible. Does &, approach the
unique invariant distribution 77

Answer: Not necessarily. Here is an example:
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Assume Xo=1. Then X1 =2, X0 =1,X5=2,....
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Convergence to Invariant Distribution

Question: Assume that the MC is irreducible. Does &, approach the
unique invariant distribution 77

Answer: Not necessarily. Here is an example:

01 . :
s - ? — E = 2.1/
| I [1 0] TP =m=x1=][1/21/2]
A'H
2/ o o o o o o © o o
1 1 ¢ o & © © & © & ©o o

Assume Xo=1. Then X1 =2, X0 =1,X5=2,....
Thus, if 1y =[1,0], 7y =[0,1],m2 = [1,0], 15 = [0, 1], etc.

Hence, n, does not converge to n = [1/2,1/2].
Notice, all cycles or closed walks have even length.
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Periodicity

Definition: Periodicity is gcd of the lengths of all closed walks.
Previous example: 2.

Definition If periodicity is 1, Markov chain is said to be aperiodic.
Otherwise, it is periodic.

Example

[A]: Closed walks of length 3 and length 4 —> periodicity = 1.
[B]: All closed walks multiple of 3 = periodicity =2.
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invariant distribution z. Then, for all i € 2",

7in(i) — m(i), as N — oo.
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Convergence of &,

Theorem Let X, be an irreducible and aperiodic Markov chain with
invariant distribution . Then, for all i € 27,

7n(i) — w(i), as N — oo.

Example
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Summary

| Markov Chains |

» Markov Chain: Pr[X,.1 =j|Xo,...,Xn =i] = P(i,j)

» FSE: B(i) =1+X; P(i.)BU): a(i) =X, P(i./)())-

> 71, =moP"

> misinvariantiff tP=rx

» Irreducible = one and only one invariant distribution =
» Irreducible = fraction of time in state / approaches 7(/)

» Irreducible + Aperiodic = &, — .

» Calculating : One finds 7 = [0,0....,1]Q~" where Q= --
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1. Examples
2. Events

3. Continuous Random Variables
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Choose a real number X, uniformly at random in [0, 1].
What is the probability that X is exactly equal to 1/3? Well, ..., 0.

Uniform in [0, L]
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What is the probability that X is exactly equal to 0.6? Again, 0.

In fact, for any x € [0,1], one has Pr[X = x] =0.

How should we then describe ‘choosing uniformly at random in [0,1]'?
Here is the way to do it:

PriXelabl]=b—aV0<a<b<i.

Makes sense: b— a is the fraction of [0, 1] that [a, b] covers.
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Let [a, b] denote the event that the point X is in the interval [a, b].

length of [a,b] b—a

Prita.bll = Jenghor 1]~ 1 2%

Intervals like [a,b] C Q = [0, 1] are events.

More generally, events in this space are unions of intervals.
Example: the event A - “within 0.2 of 0 or 1”is A=1[0,0.2] U[0.8,1].
Thus,

Pr{A] = Pr[[0,0.2]] + Pr[[0.8,1]] = 0.4.

More generally, if A, are pairwise disjoint intervals in [0, 1], then

Pr{UnAn] = Y. Pr{An].

Many subsets of [0, 1] are of this form. Thus, the probability of those
sets is well defined. We call such sets events.
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Pr[X < x] = x for x € [0,1]. Also, Pr[X < x] =0 for x <O0.
PrIX <x]=1for.2x > 1.
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Then we have Pr[X € (a,b]] = Pr[X < b] — Pr[X < a] = F(b) — F(a).
Thus, F(-) specifies the probability of all the events!
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Think of f(x) as describing how
one unit of probability is spread over [0,1]: uniformly!
Then Pr[X € A] is the probability mass over A.
Observe:

» This makes the probability automatically additive.
» We need f(x) >0and [_f(x)dx=1.
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Discrete Approximation: Fix N> 1 andlete =1/N.
Define Y=neif (n—1)e< X <neforn=1,...,N.
Then | X — Y| <eand Y is discrete: Y € {¢,2¢,...,Ne}.
Also, Pr[Y = ne] = f forn=1,...,N.

Thus, X is ‘almost discrete’
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Note that X is more likely to be closer to 1 than to 0.

One has Pr[X < x] = [*_ f(u)du = x? for x € [0,1].

Also, Pr[X € (x,x +¢€)] = [{ ¢ f(u)du =~ f(x)e.
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[ f(x)dx = 1.

It defines another way of choosing X at random in [0, 1].
Note that X is more likely to be closer to 1/2 than to 0 or 1.
For instance, Pr[X € [0,1/3]] = /% 4xdx = 2[x2](1)/3 =2

-z
Thus, Pr[X € [0,1/3]] = Pr[X € [2/3,1]] = 4 and
PriX €[1/3,2/3]] = 3.
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Let F(x) be a nondecreasing function with F(—e) =0 and F(+o) = 1.
Define X by Pr[X € (a,b]] = F(b) — F(a) for a < b. Also, for
a<bi<ap<by<---<bp,
PriX € (a1, b1]U (a2, bo] U (an, bn]]
= Pr[X € (ay,b1]]+---+ Pr[X € (an, bn]|
= F(b1)—F(a1)+---+ F(bn) — F(an).

Let f(x) = L F(x). Then,

PriX e (x,x+¢€]] = F(x+¢€)— F(x) = f(x)e.

Here, F(x) is called the cumulative distribution function (cdf) of X and
f(x) is the probability density function (pdf) of X.

To indicate that F and f correspond to the RV X, we will write them
Fx(x) and fx(x).
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Pr[X e (x,x+¢)]
An illustration of Pr[X € (x,x +¢€)] = fx(x)e:

Rectangle = f(x)e
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Thus, the pdf is the ‘local probability by unit length.
It is the ‘probability density.
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Example: hitting random location on gas tank.
Random location on circle.

Random Variable: Y distance from center.
Probability within y of center:

area of small circle

< =
PriY <yl area of dartboard
2
_ W e
= p y .

Hence,
0 fory <0
Fy(y)=PrlY <y]={ y? for0<y<i1
1 for y > 1
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Calculation of event with dartboard..

Probability between .5 and .6 of center?

Recall CDF.
0 fory <0
Fy(y)=Prl[Y<y]=< y? for0<y<i
1 fory > 1
Pri0.5<Y <0.6] = Pr[Y<0.6]—Pr[Y <0.5]

—  Fy(0.6)— Fy(0.5)
~ .36-.25
= 1
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Example: “Dart” board.

Recall that
0 fory <0
Fy(y)=PrlY <y]={ y? for0<y<1
1 for y > 1
0 fory <0
fr(y)=Fy(y)=q 2y for0<y<t
0 fory >1

The cumulative distribution function (cdf) and probability distribution
function (pdf) give full information.
Use whichever is convenient.



Target



Target

Random Variable )
. . Outcome

Event {Y <y}

T



Ula, b]



Ula, b]

A
Uniform in [a, b]
N
Fy{x)
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Expo(1)

The exponential distribution with parameter A > 0 is defined by
fx(x) = A e M 1{x > 0}

0, if x<O0
FX(X):{ 1—e ™ ifx>0.
1 4
048 |
sl A=1 Fx(z) N |
0.7 3 )‘ - 5
06 25
o8 ’ 2 fx(x)
0.4
04 " Fyir)
02 fxix) 1
0.1 05
05 1|:| 5 0g (l,

Note that Pr[X > t] = e *! for t > 0.
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Continuous random variable X, specified by

1. Fx(x)=Pr[X <x] for all x.
Cumulative Distribution Function (cdf).
Prla< X < b] = Fx(b) — Fx(a)
1.1 0< Fx(x) < 1forall x e R.
12 Fx(x) < Fx(y)ifx<y.

2. Or fx(x) , where Fx(x) = [*_ fx(u)du or fy(x) = 2Exx).
Probability Density Function (pdf).
Prla< X < b] = [? fx(x)dx = Fx(b) — Fx(a)
2.1 fx(x)>0forall x € R.
2.2 [T fx(x)dx=1.

Recall that Pr[X € (x,x + 8)] = fx(x)6.
X “takes” value nd, for n e Z, with Pr[X = néd] = fx(nd)é
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The pdf fx(x) is a nonnegative function that integrates to 1.
The cdf Fx(x) is the integral of fx.

Prix < X < x4 8] = fx(x)o
PrIX < x] = Fy(x) = /X fe(U)du
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Multiple Continuous Random Variables
One defines a pair (X, Y) of continuous RVs by specifying fx y(x,y)
for x,y € R where

fx.y(x,y)axdy = PriX € (x,x+dx), Y € (y +dy)].

The function fx y(x,y) is called the joint pdf of X and Y.
Example: Choose a point (X, Y) uniformly in the set A R2. Then

fey(X.y) = |1A|1{(x,y) € A}

where |A| is the area of A.

Interpretation. Think of (X, Y) as being discrete on a grid with mesh
size € and Pr[X = me, Y = ne| = fx y(me, ne)e?.

Extension: X = (Xj,..., X,) with #(x).
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Joint pdf: Pr(X € (x,x+8),Y = (y,y+8)) = fx.y(x,y)52.



