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Review

I Markov Chain:

I Finite set X ; π0; P = {P(i , j), i , j ∈X };
I Pr [X0 = i] = π0(i), i ∈X
I Pr [Xn+1 = j | X0, . . . ,Xn = i] = P(i , j), i , j ∈X ,n ≥ 0.
I Note:

Pr [X0 = i0,X1 = i1, . . . ,Xn = in] = π0(i0)P(i0, i1) · · ·P(in−1, in).

I First Passage Time:

I A∩B = /0;β (i) = E [TA|X0 = i];α(i) = P[TA < TB|X0 = i]
I β (i) = 1 + ∑j P(i , j)β (j);
I α(i) = ∑j P(i , j)α(j). α(A) = 1,α(B) = 0.
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Recall πn is a distribution over states for Xn.

Stationary distribution: π = πP.
Distribution over states is the same before/after transition.
probability entering i : ∑i ,j P(j , i)π(j).
probability leaving i : πi .
are Equal!

Distribution same after one step.
Questions? Does one exist? Is it unique?
If it exists and is unique. Then what?

Sometimes the distribution as n→ ∞
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Stationary: Example

Example 1:

Balance Equations.

πP = π ⇔ [π(1),π(2)]

[
1−a a

b 1−b

]
= [π(1),π(2)]

⇔ π(1)(1−a) + π(2)b = π(1) and π(1)a + π(2)(1−b) = π(2)

⇔ π(1)a = π(2)b.

These equations are redundant! We have to add an equation:
π(1) + π(2) = 1. Then we find

π = [
b

a + b
,

a
a + b

].
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Every distribution is invariant for this Markov chain. This is obvious,
since Xn = X0 for all n. Hence, Pr [Xn = i] = Pr [X0 = i],∀(i ,n).

Discussion.
We have seen a chain with one stationary,

and a chain with many.

When is here just one?
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Irreducibility.
Definition A Markov chain is irreducible if it can go from every state i
to every state j

(possibly in multiple steps).
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[B] is not irreducible. It cannot go from (2) to (1).

[C] is irreducible. It can go from every i to every j .

If you consider the graph with arrows when P(i , j) > 0, irreducible
means that there is a single connected component.
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Existence and uniqueness of Invariant Distribution

Theorem A finite irreducible Markov chain has one and only one
invariant distribution.

That is, there is a unique positive vector π = [π(1), . . . ,π(K )] such that
πP = π and ∑k π(k) = 1.

Ok. Now.
Only one stationary distribution if irreducible (or connected.)
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Long Term Fraction of Time in States

Theorem Let Xn be an irreducible Markov chain with invariant
distribution π.

Then, for all i ,

1
n

n−1

∑
m=0

1{Xm = i}→ π(i), as n→ ∞.

The left-hand side is the fraction of time that Xm = i during steps
0,1, . . . ,n−1. Thus, this fraction of time approaches π(i).

Proof: Lecture note 24 gives a plausibility argument.
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Convergence to Invariant Distribution

Question: Assume that the MC is irreducible. Does πn approach the
unique invariant distribution π?

Answer: Not necessarily. Here is an example:

Assume X0 = 1. Then X1 = 2,X2 = 1,X3 = 2, . . ..

Thus, if π0 = [1,0], π1 = [0,1],π2 = [1,0],π3 = [0,1], etc.

Hence, πn does not converge to π = [1/2,1/2].
Notice, all cycles or closed walks have even length.
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Periodicity

Definition: Periodicity is gcd of the lengths of all closed walks.
Previous example: 2.
Definition If periodicity is 1, Markov chain is said to be aperiodic.
Otherwise, it is periodic.
Example

[A]: Closed walks of length 3 and length 4 =⇒ periodicity = 1.

[B]: All closed walks multiple of 3 =⇒ periodicity =2.
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Summary

Markov Chains

I Markov Chain: Pr [Xn+1 = j |X0, . . . ,Xn = i] = P(i , j)

I FSE: β (i) = 1 + ∑j P(i , j)β (j);α(i) = ∑j P(i , j)α(j).

I πn = π0Pn

I π is invariant iff πP = π

I Irreducible⇒ one and only one invariant distribution π

I Irreducible⇒ fraction of time in state i approaches π(i)

I Irreducible + Aperiodic⇒ πn→ π.

I Calculating π: One finds π = [0,0. . . . ,1]Q−1 where Q = · · · .
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Uniformly at Random in [0,1].

Choose a real number X , uniformly at random in [0,1].

What is the probability that X is exactly equal to 1/3? Well, ..., 0.

What is the probability that X is exactly equal to 0.6? Again, 0.

In fact, for any x ∈ [0,1], one has Pr [X = x ] = 0.

How should we then describe ‘choosing uniformly at random in [0,1]’?

Here is the way to do it:

Pr [X ∈ [a,b]] = b−a,∀0≤ a≤ b ≤ 1.

Makes sense: b−a is the fraction of [0,1] that [a,b] covers.
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b−a
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Many subsets of [0,1] are of this form. Thus, the probability of those
sets is well defined. We call such sets events.
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=⇒ Pr [A] = ∑ω∈A pω for A⊂ Ω.

Continuous space: e.g., Ω = [0,1],
Pr [ω] is typically 0.

Instead, start with Pr [A] for some events A.
Event A = interval, or union of intervals.
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Uniformly at Random in [0,1].

Pr [X ≤ x ] = x for x ∈ [0,1]. Also, Pr [X ≤ x ] = 0 for x < 0.
Pr [X ≤ x ] = 1 for .2x > 1.

Define F (x) = Pr [X ≤ x ].

Then we have Pr [X ∈ (a,b]] = Pr [X ≤ b]−Pr [X ≤ a] = F (b)−F (a).

Thus, F (·) specifies the probability of all the events!
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Pr [X ∈ (a,b]] = Pr [X ≤ b]−Pr [X ≤ a]

= F (b)−F (a).

An alternative view is to define f (x) = d
dx F (x) = 1{x ∈ [0,1]}. Then

F (b)−F (a) =
∫ b
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Uniformly at Random in [0,1].

Think of f (x) as describing how
one unit of probability is spread over [0,1]: uniformly!

Then Pr [X ∈ A] is the probability mass over A.

Observe:

I This makes the probability automatically additive.

I We need f (x)≥ 0 and
∫

∞

−∞
f (x)dx = 1.
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Uniformly at Random in [0,1].

Discrete Approximation: Fix N� 1 and let ε = 1/N.

Define Y = nε if (n−1)ε < X ≤ nε for n = 1, . . . ,N.

Then |X −Y | ≤ ε and Y is discrete: Y ∈ {ε,2ε, . . . ,Nε}.
Also, Pr [Y = nε] = 1

N for n = 1, . . . ,N.

Thus, X is ‘almost discrete.’
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Nonuniformly at Random in [0,1].

This figure shows a different choice of f (x)≥ 0 with
∫

∞

−∞
f (x)dx = 1.

It defines another way of choosing X at random in [0,1].

Note that X is more likely to be closer to 1 than to 0.

One has Pr [X ≤ x ] =
∫ x
−∞

f (u)du = x2 for x ∈ [0,1].

Also, Pr [X ∈ (x ,x + ε)] =
∫ x+ε

x f (u)du ≈ f (x)ε.



Nonuniformly at Random in [0,1].

This figure shows a different choice of f (x)≥ 0 with
∫

∞

−∞
f (x)dx = 1.

It defines another way of choosing X at random in [0,1].

Note that X is more likely to be closer to 1 than to 0.

One has Pr [X ≤ x ] =
∫ x
−∞

f (u)du = x2 for x ∈ [0,1].

Also, Pr [X ∈ (x ,x + ε)] =
∫ x+ε

x f (u)du ≈ f (x)ε.



Nonuniformly at Random in [0,1].

This figure shows a different choice of f (x)≥ 0 with
∫

∞

−∞
f (x)dx = 1.

It defines another way of choosing X at random in [0,1].

Note that X is more likely to be closer to 1 than to 0.

One has Pr [X ≤ x ] =
∫ x
−∞

f (u)du = x2 for x ∈ [0,1].

Also, Pr [X ∈ (x ,x + ε)] =
∫ x+ε

x f (u)du ≈ f (x)ε.



Nonuniformly at Random in [0,1].

This figure shows a different choice of f (x)≥ 0 with
∫

∞

−∞
f (x)dx = 1.

It defines another way of choosing X at random in [0,1].

Note that X is more likely to be closer to 1 than to 0.

One has Pr [X ≤ x ] =
∫ x
−∞

f (u)du = x2 for x ∈ [0,1].

Also, Pr [X ∈ (x ,x + ε)] =
∫ x+ε

x f (u)du ≈ f (x)ε.



Nonuniformly at Random in [0,1].

This figure shows a different choice of f (x)≥ 0 with
∫

∞

−∞
f (x)dx = 1.

It defines another way of choosing X at random in [0,1].

Note that X is more likely to be closer to 1 than to 0.

One has Pr [X ≤ x ] =
∫ x
−∞

f (u)du = x2 for x ∈ [0,1].

Also, Pr [X ∈ (x ,x + ε)] =
∫ x+ε

x f (u)du ≈ f (x)ε.



Nonuniformly at Random in [0,1].

This figure shows a different choice of f (x)≥ 0 with
∫

∞

−∞
f (x)dx = 1.

It defines another way of choosing X at random in [0,1].

Note that X is more likely to be closer to 1 than to 0.

One has

Pr [X ≤ x ] =
∫ x
−∞

f (u)du = x2 for x ∈ [0,1].

Also, Pr [X ∈ (x ,x + ε)] =
∫ x+ε

x f (u)du ≈ f (x)ε.



Nonuniformly at Random in [0,1].

This figure shows a different choice of f (x)≥ 0 with
∫

∞

−∞
f (x)dx = 1.

It defines another way of choosing X at random in [0,1].

Note that X is more likely to be closer to 1 than to 0.

One has Pr [X ≤ x ] =
∫ x
−∞

f (u)du = x2

for x ∈ [0,1].

Also, Pr [X ∈ (x ,x + ε)] =
∫ x+ε

x f (u)du ≈ f (x)ε.



Nonuniformly at Random in [0,1].

This figure shows a different choice of f (x)≥ 0 with
∫

∞

−∞
f (x)dx = 1.

It defines another way of choosing X at random in [0,1].

Note that X is more likely to be closer to 1 than to 0.

One has Pr [X ≤ x ] =
∫ x
−∞

f (u)du = x2 for x ∈ [0,1].

Also, Pr [X ∈ (x ,x + ε)] =
∫ x+ε

x f (u)du ≈ f (x)ε.



Nonuniformly at Random in [0,1].

This figure shows a different choice of f (x)≥ 0 with
∫

∞

−∞
f (x)dx = 1.

It defines another way of choosing X at random in [0,1].

Note that X is more likely to be closer to 1 than to 0.

One has Pr [X ≤ x ] =
∫ x
−∞

f (u)du = x2 for x ∈ [0,1].

Also, Pr [X ∈ (x ,x + ε)] =
∫ x+ε

x f (u)du

≈ f (x)ε.



Nonuniformly at Random in [0,1].

This figure shows a different choice of f (x)≥ 0 with
∫

∞

−∞
f (x)dx = 1.

It defines another way of choosing X at random in [0,1].

Note that X is more likely to be closer to 1 than to 0.

One has Pr [X ≤ x ] =
∫ x
−∞

f (u)du = x2 for x ∈ [0,1].

Also, Pr [X ∈ (x ,x + ε)] =
∫ x+ε

x f (u)du ≈ f (x)ε.



Another Nonuniform Choice at Random in [0,1].

This figure shows yet a different choice of f (x)≥ 0 with∫
∞

−∞
f (x)dx = 1.

It defines another way of choosing X at random in [0,1].

Note that X is more likely to be closer to 1/2 than to 0 or 1.

For instance, Pr [X ∈ [0,1/3]] =
∫ 1/3

0 4xdx = 2
[
x2]1/3

0 = 2
9 .

Thus, Pr [X ∈ [0,1/3]] = Pr [X ∈ [2/3,1]] = 2
9 and

Pr [X ∈ [1/3,2/3]] = 5
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General Random Choice in ℜ

Let F (x) be a nondecreasing function with F (−∞) = 0 and F (+∞) = 1.

Define X by Pr [X ∈ (a,b]] = F (b)−F (a) for a < b. Also, for
a1 < b1 < a2 < b2 < · · ·< bn,

Pr [X ∈ (a1,b1]∪ (a2,b2]∪ (an,bn]]

= Pr [X ∈ (a1,b1]] + · · ·+ Pr [X ∈ (an,bn]]

= F (b1)−F (a1) + · · ·+ F (bn)−F (an).

Let f (x) = d
dx F (x). Then,

Pr [X ∈ (x ,x + ε]] = F (x + ε)−F (x)≈ f (x)ε.

Here, F (x) is called the cumulative distribution function (cdf) of X and
f (x) is the probability density function (pdf) of X .

To indicate that F and f correspond to the RV X , we will write them
FX (x) and fX (x).
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Pr [X ∈ (x ,x + ε)]

An illustration of Pr [X ∈ (x ,x + ε)]≈ fX (x)ε:

Thus, the pdf is the ‘local probability by unit length.’

It is the ‘probability density.’
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Discrete Approximation

Fix ε � 1 and let Y = nε if X ∈ (nε,(n + 1)ε].

Thus, Pr [Y = nε] = FX ((n + 1)ε)−FX (nε).

Note that |X −Y | ≤ ε and Y is a discrete random variable.

Also, if fX (x) = d
dx FX (x), then FX (x + ε)−FX (x)≈ fX (x)ε.

Hence, Pr [Y = nε]≈ fX (nε)ε.

Thus, we can think of X of being almost discrete with
Pr [X = nε]≈ fX (nε)ε.
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Example: CDF
Example: hitting random location on gas tank.

Random location on circle.

y

1

Random Variable: Y distance from center.
Probability within y of center:

Pr [Y ≤ y ] =
area of small circle
area of dartboard

=
πy2

π
= y2.

Hence,

FY (y) = Pr [Y ≤ y ] =


0 for y < 0
y2 for 0≤ y ≤ 1
1 for y > 1
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Calculation of event with dartboard..

Probability between .5 and .6 of center?

Recall CDF.

FY (y) = Pr [Y ≤ y ] =


0 for y < 0
y2 for 0≤ y ≤ 1
1 for y > 1

Pr [0.5 < Y ≤ 0.6] = Pr [Y ≤ 0.6]−Pr [Y ≤ 0.5]

= FY (0.6)−FY (0.5)

= .36− .25
= .11
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PDF.

Example: “Dart” board.

Recall that

FY (y) = Pr [Y ≤ y ] =


0 for y < 0
y2 for 0≤ y ≤ 1
1 for y > 1

fY (y) = F ′Y (y) =

 0 for y < 0
2y for 0≤ y ≤ 1
0 for y > 1

The cumulative distribution function (cdf) and probability distribution
function (pdf) give full information.
Use whichever is convenient.



PDF.

Example: “Dart” board.
Recall that

FY (y) = Pr [Y ≤ y ] =


0 for y < 0
y2 for 0≤ y ≤ 1
1 for y > 1

fY (y) = F ′Y (y) =

 0 for y < 0
2y for 0≤ y ≤ 1
0 for y > 1

The cumulative distribution function (cdf) and probability distribution
function (pdf) give full information.
Use whichever is convenient.



PDF.

Example: “Dart” board.
Recall that

FY (y) = Pr [Y ≤ y ] =


0 for y < 0
y2 for 0≤ y ≤ 1
1 for y > 1

fY (y) = F ′Y (y) =

 0 for y < 0
2y for 0≤ y ≤ 1
0 for y > 1

The cumulative distribution function (cdf) and probability distribution
function (pdf) give full information.
Use whichever is convenient.



PDF.

Example: “Dart” board.
Recall that

FY (y) = Pr [Y ≤ y ] =


0 for y < 0
y2 for 0≤ y ≤ 1
1 for y > 1

fY (y) = F ′Y (y) =

 0 for y < 0
2y for 0≤ y ≤ 1
0 for y > 1

The cumulative distribution function (cdf) and probability distribution
function (pdf) give full information.

Use whichever is convenient.



PDF.

Example: “Dart” board.
Recall that

FY (y) = Pr [Y ≤ y ] =


0 for y < 0
y2 for 0≤ y ≤ 1
1 for y > 1

fY (y) = F ′Y (y) =

 0 for y < 0
2y for 0≤ y ≤ 1
0 for y > 1

The cumulative distribution function (cdf) and probability distribution
function (pdf) give full information.
Use whichever is convenient.



Target



Target



U[a,b]



U[a,b]



Expo(λ )
The exponential distribution with parameter λ > 0 is defined by

fX (x) = λe−λx1{x ≥ 0}
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X “takes” value nδ , for n ∈ Z , with Pr [X = nδ ] = fX (nδ )δ
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A Picture

The pdf fX (x) is a nonnegative function that integrates to 1.

The cdf FX (x) is the integral of fX .

Pr [x < X < x + δ ]≈ fX (x)δ

Pr [X ≤ x ] = Fx (x) =
∫ x

−∞

fX (u)du
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Multiple Continuous Random Variables

One defines a pair (X ,Y ) of continuous RVs by specifying fX ,Y (x ,y)
for x ,y ∈ℜ where

fX ,Y (x ,y)dxdy = Pr [X ∈ (x ,x + dx),Y ∈ (y + dy)].

The function fX ,Y (x ,y) is called the joint pdf of X and Y .

Example: Choose a point (X ,Y ) uniformly in the set A⊂ℜ2. Then

fX ,Y (x ,y) =
1
|A|

1{(x ,y) ∈ A}

where |A| is the area of A.

Interpretation. Think of (X ,Y ) as being discrete on a grid with mesh
size ε and Pr [X = mε,Y = nε] = fX ,Y (mε,nε)ε2.

Extension: X = (X1, . . . ,Xn) with fX(x).
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Summary

Continuous Probability 1

1. pdf:

Pr [X ∈ (x ,x + δ ]] = fX (x)δ .

2. CDF: Pr [X ≤ x ] = FX (x) =
∫ x
−∞

fX (y)dy .

3. U[a,b]: fX (x) = 1
b−a 1{a≤ x ≤ b};FX (x) = x−a

b−a for a≤ x ≤ b.

4. Expo(λ ):
fX (x) = λ exp{−λx}1{x ≥ 0};FX (x) = 1−exp{−λx} for x ≤ 0.

5. Target: fX (x) = 2x1{0≤ x ≤ 1};FX (x) = x2 for 0≤ x ≤ 1.

6. Joints: Is this 4/20?
Joint pdf: Pr [X ∈ (x ,x + δ ),Y = (y ,y + δ )) = fX ,Y (x ,y)δ 2.
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