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This is Pafnuty’s inequality:
Theorem:

PriIX—E[X]| > a] < 2] forall a> 0.

Proof: Let Y = |X — E[X]| and f(y) = y2. Then,
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Yes! The variance does measure the “deviations from the mean.”
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We want to estimate

Pr[|Yn—0.5| >0.1] = Pr[Y, < 0.4 or Y, > 0.6].

By Chebyshey,
Pr[|Y,—0.5|>0.1] < V"g’g@ = 100var[Y,).
Now,

var[Yy] = 5 (var[Xi]+--- + var{Xs]) = var[X;] < z5.
Var(X;) = p(1—1Ip) < (:5)(.5) =4
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Fraction of H’s

Xyt Xy
N n

Yn ,forn>1.

Pr[|Y,—0.5| >0.1] < %

For n= 1,000, we find that this probability is less than 2.5%.
As n — oo, this probability goes to zero.

In fact, for any € > 0, as n — «, the probability that the fraction of Hs
is within € > 0 of 50% approaches 1:

Pr[|Yn—0.5]|<g] —1.

This is an example of the Law of Large Numbers.
We look at a calculation of this next.
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n
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Weak Law of Large Numbers

Theorem Weak Law of Large Numbers

Let X1, Xo,... be pairwise independent with the same distribution and
mean u. Then, for all € > 0,

Pr[|w—u|ze]—>0, as n— oo.
n

Proof:
Let Y, = M Then

var[Yp] _ var[Xi+---+ Xp

Pf[|Yn—ﬂ|Z€] < £2 n2e2
_ nvar[Xi] _ var[Xi] 10,881 oo,
n2e2 ne2
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‘ Variance; Inequalities; WLLN ‘

v

Variance: var[X]:= E[(X — E[X])?] = E[X?] - E[X]?
Fact: var[aX + b] = &2var[X]

v

v

Sum: X,Y,Z pairwise ind. = var[X+Y+Z]="--
Markov: Pr[X > a] < E[f(X)]/f(a) where ...
Chebyshev: Pr[|X — E[X]| > a] < var[X]/&®
WLLN: X i.i.d. = X545 & E[X]

v

v

v



Probability: Midterm 2 Review.

» Framework:

» Probability Space

» Conditional Probability & Bayes’ Rule
» Independence

» Mutual Independence
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» Priors: Pr[Ap] =pn,n=1,....M
» Conditional Probabilities: Pr[B|A;]l =gn,n=1,...,N

DN : qN e
PN QAv Ay, ... Ay disjoint

Ay AN AIU“'UAN:Q

--------- A
plI < i IAl 1
| :A q1 pn = Pr[A,]
p”I Il é;? IAm Pn . Qn B n :P,[B|A"]
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Let p}, = Pr[An|B] be the posterior probabilities.
Thus, p, = PnQn/(P1G1 + -+ PNGh).-

Questions: Is it true that

» if gn > qx, then pj, > pj? Not necessarily.

> if pp > pk, then p, > p ? Not necessarily.

> if pp > px and gn > g, then p, > p ? Yes.
» if g, =1, then p}, > 0? Not necessarily.

> if p, =1/N for all n, then MLE = MAP? Yes.
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wa
it

€ : Uniform
Die 2 B

‘red die is 1’

O Q=

‘sum is 77

“First coin yields 1” and "Sum is 7” are
independent

Pairwise, but not mutually

If {A;,i € J} are mutually independent,
then [A; N Ag]AAs and Ay \ As are
independent.

Our intuitive meaning of “independent
events” is mutual independence.
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Recall

» Aand B are independent if Pr{[An B] = Pr[A]Pr[B].

> {A;,j € J} are mutually independent if
Pr[mjeKAj] = I'IjEKPr[A/-],V finite K C J.

Thus, A, B, C, D are mutually independent if there are

» independent 2 by 2:
Pr[AnB] = Pr[A]Pr[B],...,Pr[Cn D] = Pr[C]Pr[D]

> by 3: PrfJAnBN C] = Pr[A]|Pr[B]Pr[C],...,Pr[BNCND] =
Pr[B]Pr|C]Pr[D]

> by 4: PrfJAnBnN CnN D] = Pr[A|Pr[B]|Pr[C]Pr[D].
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Independence: Question

Consider the uniform probability
space and the events A, B, C, D.

Which maximal collections of events among A, B, C, D are pairwise
independent?

{A.B,C}, and {B,C, D}

Can you find three events among A, B, C, D that are mutually
independent?

No: We would need an outcome with probability 1/8.
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Review: Collisions & Collecting

Collisions:
—m2/2n

Pr[no collision] ~ e
Collecting:
Prlmiss Wilson] ~ e~™/"

Pr[miss at least one] < ne~ /"
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Approximations:

In(1—¢)~ —¢
exp{—¢e}t~1-—¢

Sums:

(a+b)" = zn: (;;) arp™m

m=0

n(n+1)

142+ 4n=—"
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Math Tricks, continued

Symmetry: E.g., if we pick balls from a bag, with no replacement,
Prlball 5 is red] = Prball 1 is red]

Order of balls = permutation.

All permutations have same probability.
Union Bound:

PrlfAUBUC] < Pr[A]+ Pr[B] + Pr[C]

Inclusion/Exclusion:

Pr[Au B| = Pr[A]+ Pr[B] — Pr[An B]

Total Probability:

Pr[B] = Pr[A{]Pr|B|A1] +--- + Pr[An] Pr[B|An]

An [?-bounded martingale converges almost surely. Just kidding!
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Simple Inclusion/Exclusion

Sum Rule: For disjoint sets Sand T, |SUT|=|S|+|T]|

Example: How many permutations of nitems start with 1 or 2?
1x(n=1) +1 x(n—-1)!

Inclusion/Exclusion Rule: For any Sand T,
|[SUT|=|S|+|T|—|SNT]|.

Example: How many 10-digit phone numbers have 7 as their first or
second digit?

S = phone numbers with 7 as first digit.|S| = 10°

T = phone numbers with 7 as second digit. |T| = 10°.

SN T = phone numbers with 7 as first and second digit. |SN T| = 108.
Answer: |S|+|T|—|SNT|=10°+10%—108.
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Combinatorial Proofs.

. 1
Theorem: (";") = () + (,")-
Proof: How many size k subsets of n+1? (/).
How many size k subsets of n+17?
How many contain the first element?

Chose first element, need to choose k — 1 more from remaining n
elements.

= («4)
How many don’t c