Back to work...with some review.

Probability Space: Q, Pr:Q — [0,1], Ypecq Pr(w) = 1.

Back to work...with some review.

Probability Space: Q, Pr:Q — [0,1], Y peq Pr(w) =1.
Random Variables: X : Q — R.

Back to work...with some review.

Probability Space: Q, Pr:Q — [0,1], Y peq Pr(w) =1.
Random Variables: X : Q — R.
Associated event: PriX = a] = ¥y x(w)=a Pr(®)

Back to work...with some review.

Probability Space: Q, Pr:Q — [0,1], Y peq Pr(w) =1.
Random Variables: X : Q — R.
Associated event: PriX = a] = ¥y x(w)=a Pr(®)

Independent X and Y if and only if all associated events are
independent.

Back to work...with some review.

Probability Space: Q, Pr:Q — [0,1], Ypeq Pr(w) =
Random Variables: X : Q — R.

Associated event: PriX = a] = ¥y x(w)=a Pr(®)
Independent X and Y if and only if all associated events are
independent.

Expectation: E[X] =Y aPr[X = a] = ¥ gina Pr(o).

Back to work...with some review.

Probability Space: Q, Pr:Q — [0,1], Ypeq Pr(w) =
Random Variables: X : Q — R.

Associated event: PriX = a] = ¥y x(w)=a Pr(®)
Independent X and Y if and only if all associated events are
independent.

Expectation: E[X] =Y aPr[X = a] = ¥ gina Pr(o).

Linearity: E[X+ Y] = E[X]+ E[Y].

Back to work...with some review.

Probability Space: Q, Pr:Q — [0,1], Ypeq Pr(w) =
Random Variables: X : Q — R.

Associated event: PriX = a] = ¥y x(w)=a Pr(®)
Independent X and Y if and only if all associated events are
independent.

Expectation: E[X] =Y aPr[X = a] = ¥ gina Pr(o).

Linearity: E[X+ Y] = E[X]+ E[Y].

Variance: Var(X) = E[(X — E[X])?] = E[X?] - (E(X))?

Back to work...with some review.

Probability Space: Q, Pr:Q — [0,1], Ypeq Pr(w) =
Random Variables: X : Q — R.

Associated event: PriX = a] = ¥y x(w)=a Pr(®)
Independent X and Y if and only if all associated events are
independent.

Expectation: E[X] =Y aPr[X = a] = ¥ gina Pr(o).

Linearity: E[X+ Y] = E[X]+ E[Y].

Variance: Var(X) = E[(X — E[X])?] = E[X?] - (E(X))?
For independent X, Y, Var(X+Y) = Var(X)+ Var(Y).

Back to work...with some review.

Probability Space: Q, Pr:Q — [0,1], Ypeq Pr(w) =
Random Variables: X : Q — R.

Associated event: PriX = a] = ¥y x(w)=a Pr(®)
Independent X and Y if and only if all associated events are
independent.

Expectation: E[X] =Y aPr[X = a] = ¥ gina Pr(o).

Linearity: E[X+ Y] = E[X]+ E[Y].

Variance: Var(X) = E[(X — E[X])?] = E[X?] - (E(X))?

For independent X, Y, Var(X+Y) = Var(X)+ Var(Y).

Also: Var(cX) = ¢?Var(X) and Var(X +b) = Var(X).

Back to work...with some review.

Probability Space: Q, Pr:Q — [0,1], Ypeq Pr(w) =
Random Variables: X : Q — R.

Associated event: PriX = a] = ¥y x(w)=a Pr(®)
Independent X and Y if and only if all associated events are
independent.

Expectation: E[X] =Y aPr[X = a] = ¥ gina Pr(o).

Linearity: E[X+ Y] = E[X]+ E[Y].

Variance: Var(X) = E[(X — E[X])?] = E[X?] - (E(X))?
For independent X, Y, Var(X+Y) = Var(X)+ Var(Y).
Also: Var(cX) = ¢?Var(X) and Var(X +b) = Var(X).

X ~ P(1)

Back to work...with some review.

Probability Space: Q, Pr:Q — [0,1], Ypeq Pr(w) =
Random Variables: X : Q — R.

Associated event: PriX = a] = ¥y x(w)=a Pr(®)
Independent X and Y if and only if all associated events are
independent.

Expectation: E[X] =Y aPr[X = a] = ¥ gina Pr(o).

Linearity: E[X+ Y] = E[X]+ E[Y].

Variance: Var(X) = E[(X — E[X])?] = E[X?] - (E(X))?
For independent X, Y, Var(X+Y) = Var(X)+ Var(Y).
Also: Var(cX) = ¢?Var(X) and Var(X +b) = Var(X).

X ~ P(A) E(X) = A, Var(X) = A

Back to work...with some review.

Probability Space: Q, Pr:Q — [0,1], Ypeq Pr(w) =

Random Variables: X : Q — R.

Associated event: PriX = a] = ¥y x(w)=a Pr(®)
Independent X and Y if and only if all associated events are
independent.

Expectation: E[X] =Y aPr[X = a] = ¥ gina Pr(o).
Linearity: E[X+ Y] = E[X]+ E[Y].

Variance: Var(X) = E[(X — E[X])?] = E[X?] - (E(X))?
For independent X, Y, Var(X+Y) = Var(X)+ Var(Y).
Also: Var(cX) = ¢?Var(X) and Var(X +b) = Var(X).

X~PA)EX)=4, Var(X)=21

X ~ B(n,p)

Back to work...with some review.

Probability Space: Q, Pr:Q — [0,1], Ypeq Pr(w) =
Random Variables: X : Q — R.

Associated event: PriX = a] = ¥y x(w)=a Pr(®)
Independent X and Y if and only if all associated events are
independent.

Expectation: E[X] =Y aPr[X = a] = ¥ gina Pr(o).

Linearity: E[X+ Y] = E[X]+ E[Y].

Variance: Var(X) = E[(X — E[X])?] = E[X?] - (E(X))?

For independent X, Y, Var(X+Y) = Var(X)+ Var(Y).

Also: Var(cX) = ¢?Var(X) and Var(X +b) = Var(X).

X ~ P(X) E(X)=A, Var(X) =2
X~ B(n,p) E(X) = np, Var(X) = np(1 - p)

Back to work...with some review.

Probability Space: Q, Pr:Q — [0,1], Ypeq Pr(w) =

Random Variables: X : Q — R.

Associated event: PriX = a] = ¥y x(w)=a Pr(®)
Independent X and Y if and only if all associated events are
independent.

Expectation: E[X] =Y aPr[X = a] = ¥ gina Pr(o).
Linearity: E[X+ Y] = E[X]+ E[Y].

Variance: Var(X) = E[(X — E[X])?] = E[X?] - (E(X))?
For independent X, Y, Var(X+Y) = Var(X)+ Var(Y).
Also: Var(cX) = ¢?Var(X) and Var(X +b) = Var(X).

X~PA)EX)=4, Var(X)=21

X ~ B(n,p) E(X) = np, Var(X) = np(1-p)

X~U{1,....,n}

Back to work...with some review.

Probability Space: Q, Pr:Q — [0,1], Ypeq Pr(w) =

Random Variables: X : Q — R.

Associated event: PriX = a] = ¥y x(w)=a Pr(®)
Independent X and Y if and only if all associated events are
independent.

Expectation: E[X] =Y aPr[X = a] = ¥ gina Pr(o).
Linearity: E[X+ Y] = E[X]+ E[Y].

Variance: Var(X) = E[(X — E[X])?] = E[X?] - (E(X))?
For independent X, Y, Var(X+Y) = Var(X)+ Var(Y).
Also: Var(cX) = ¢?Var(X) and Var(X +b) = Var(X).

X~PL)EX)=A, Var(X)=A.

X ~ B(n,p) E(X) = np, Var(X) = np(1-p)

X ~U{1,...,n} E[X] = 241, var(X) = =51

Markov.

Markov:

Markov.

Markov:
E[f(X)]

For increasing function f(x) — R™, Pr[X > a] < ff((a) .

Markov.

Markov:
For increasing function f(x) — R™, Pr[X > a] <

E[f(X)]
f(a) -

Simple Markov: Not so many can be way above average.

Markov.

Markov:

For increasing function f(x) — R™, Pr[X > a] < Suc)

f(a) -
Simple Markov: Not so many can be way above average.
For positive random variable, X, Pr[X > a] < %

Markov.

Markov:
For increasing function f(x) — R™, Pr[X > a] <

E[f(X)]
f(a) -

Simple Markov: Not so many can be way above average.
For positive random variable, X, Pr[X > a] < %
Proof: Take f(x) = x in Markov.

Markov.

Markov:
For increasing function f(x) — R™, Pr[X > a] <

E[f(X)]
f(a) -

Simple Markov: Not so many can be way above average.
For positive random variable, X, Pr[X > a] < %
Proof: Take f(x) = x in Markov.

Markov.

Markov:
For increasing function f(x) — R™, Pr[X > a] <

E[f(X)]
f(a) -

Simple Markov: Not so many can be way above average.
For positive random variable, X, Pr[X > a] < %
Proof: Take f(x) = x in Markov.

Proof of Markov: Use random variable Y = f(X) in Simple
Markov.

Markov.

Markov:
For increasing function f(x) — R™, Pr[X > a] <

E[f(X)]
f(a) -

Simple Markov: Not so many can be way above average.
For positive random variable, X, Pr[X > a] < %
Proof: Take f(x) = x in Markov.

Proof of Markov: Use random variable Y = f(X) in Simple
Markov.

O

Markov.

Markov:
For increasing function f(x) — R™, Pr[X > a] <

E[f(X)]
f(a) -

Simple Markov: Not so many can be way above average.
For positive random variable, X, Pr[X > a] < %
Proof: Take f(x) = x in Markov.

Proof of Markov: Use random variable Y = f(X) in Simple
Markov.

Circular!

O

Markov.

Markov:
For increasing function f(x) — R™, Pr[X > a] <

E[f(X)]
f(a) -

Simple Markov: Not so many can be way above average.
For positive random variable, X, Pr[X > a] < %
Proof: Take f(x) = x in Markov.

Proof of Markov: Use random variable Y = f(X) in Simple
Markov.

Circular!

Proof of Simple Markov:
E[X] =YXy xPr[X =Xx]

O

Markov.

Markov:
For increasing function f(x) — R™, Pr[X > a] <

E[f(X)]
f(a) -

Simple Markov: Not so many can be way above average.
For positive random variable, X, Pr[X > a] < %
Proof: Take f(x) = x in Markov.

Proof of Markov: Use random variable Y = f(X) in Simple
Markov.

Circular!

Proof of Simple Markov:
E[X] =YXxXPr[X =Xx] > Ly>aXPriX = x]

O

Markov.

Markov:
For increasing function f(x) — R™, Pr[X > a] <

E[f(X)]
f(a) -

Simple Markov: Not so many can be way above average.
For positive random variable, X, Pr[X > a] < %
Proof: Take f(x) = x in Markov.

Proof of Markov: Use random variable Y = f(X) in Simple
Markov.

Circular!

Proof of Simple Markov:
E[X] =YXxXPr[X =Xx] > Ly>aXPriX = x]
> Y x>aadPr[X =x]

O

Markov.

Markov:
For increasing function f(x) — R™, Pr[X > a] <

E[f(X)]
f(a) -

Simple Markov: Not so many can be way above average.
For positive random variable, X, Pr[X > a] < %
Proof: Take f(x) = x in Markov.

Proof of Markov: Use random variable Y = f(X) in Simple
Markov.

Circular!

Proof of Simple Markov:
E[X] =YXxXPr[X =Xx] > Ly>aXPriX = x]
> szaaPr[X:x] = a):xzapr[x: X]

O

Markov.

Markov:
For increasing function f(x) — R™, Pr[X > a] <

E[f(X)]
f(a) -

Simple Markov: Not so many can be way above average.
For positive random variable, X, Pr[X > a] < %
Proof: Take f(x) = x in Markov.

Proof of Markov: Use random variable Y = f(X) in Simple
Markov.

Circular!

Proof of Simple Markov:
E[X] =YXxXPr[X =Xx] > Ly>aXPriX = x]

>Yxsaa@Pr[X=x]=aY >, PriX=x]=aPr[X > aJ.

O

Markov.

Markov:
For increasing function f(x) — R™, Pr[X > a] <

E[f(X)]
f(a) -

Simple Markov: Not so many can be way above average.
For positive random variable, X, Pr[X > a] < %
Proof: Take f(x) = x in Markov.

Proof of Markov: Use random variable Y = f(X) in Simple
Markov.

Circular!

Proof of Simple Markov:
E[X] =YXxXPr[X =Xx] > Ly>aXPriX = x]

>Yxsaa@Pr[X=x]=aY >, PriX=x]=aPr[X > aJ.

O

Markov Inequality Example: P(1)

Let X = P(A).

Markov Inequality Example: P(1)

Let X = P(A). Recall that E[X] =

Markov Inequality Example: P(1)

Let X = P(A). Recall that E[X] = A, Var(X) = A and so E[X?] =

Markov Inequality Example: P(1)

Let X = P(A). Recall that E[X] = A, Var(X) = A and so E[X?] = A + A2.

Markov Inequality Example: P(1)

Let X = P(A). Recall that E[X] = A, Var(X) = A and so E[X?] = A + A2.

Choosing f(x) = x, we
get

Markov Inequality Example: P(1)

Let X = P(A). Recall that E[X] = A, Var(X) = A and so E[X?] = A + A2.

Choosing f(x) = x, we
get
E[X] _A

PriX>a] < .
a

Markov Inequality Example: P(1)

Let X = P(A). Recall that E[X] = A, Var(X) = A and so E[X?] = A + A2.

Choosing f(x) = x, we

get

PriX>al < E[X] &
a

Choosing f(x) = x2,

we get

Markov Inequality Example: P(1)

Let X = P(A). Recall that E[X] = A, Var(X) = A and so E[X?] = A + A2.

Choosing f(x) = x, we

get

PriX>al < E[X] &
a

Choosing f(x) = x2,

we get

E[X?] A+A2
= .

PriX>a]l< 2

Markov Inequality Example: P(1)

Let X = P(A). Recall that E[X] =

Choosing f(x) = x, we
get

E[X] A

PriX>a] < —.

Q)

Choosing f(x) = x2,
we get

PriX>a]< —5—

E[X2] A+A2

a2

o8

06

0.4

0.2

A, Var(X) =

A and so E[X?] = A +A2.

X = P()\),A =10

| PriX > al 1
Ill ¥ ~
\ P i
\, \
\’ -
. \ i .
20 40 80 80 100 a 120

Chebyshev’s Inequality

This is Pafnuty’s inequality:

Chebyshev’s Inequality

This is Pafnuty’s inequality:
Theorem:

X]
Pr(|X — E[X]| > &] < 2 , foralla>0.

Chebyshev’s Inequality

This is Pafnuty’s inequality:
Theorem:

X]
Pr(|X — E[X]| > &] < 2 , foralla>0.

Proof: Let Y = |X — E[X]| and f(y) = y°.

Chebyshev’s Inequality

This is Pafnuty’s inequality:
Theorem:

X]
Pr(|X — E[X]| > &] < 2 , foralla>0.

Proof: Let Y = |X — E[X]| and f(y) = y2. Then,

PriY > g < EEf((;)/)]

Chebyshev’s Inequality

This is Pafnuty’s inequality:
Theorem:

X]
Pr(|X — E[X]| > &] < 2 , foralla>0.

Proof: Let Y = |X — E[X]| and f(y) = y2. Then,

E[f(Y X
PrlY>al < [f((a))] - Va; I

Chebyshev’s Inequality

This is Pafnuty’s inequality:
Theorem:

X]
Pr(|X — E[X]| > &] < 2 , foralla>0.

Proof: Let Y = |X — E[X]| and f(y) = y2. Then,

E[f(Y X
PrlY>al < [f((a))] - Va; I

Chebyshev’s Inequality

This is Pafnuty’s inequality:
Theorem:

X]
Pr(|X — E[X]| > &] < 2 , foralla>0.

Proof: Let Y = |X — E[X]| and f(y) = y2. Then,

E[f(Y X
PrlY>al < [f((a))] - Va; I

Yes!

Chebyshev’s Inequality

This is Pafnuty’s inequality:
Theorem:

PriIX—E[X]| > a] < 2] forall a> 0.

Proof: Let Y = |X — E[X]| and f(y) = y2. Then,

E[f(Y X
PrlY>al < [f((a))] - Va; I

Yes! The variance does measure the “deviations from the mean.”

Chebyshev and Poisson

Chebyshev and Poisson
Let X = P(1). Then, E[X] =4 and var[X] =

Chebyshev and Poisson
Let X = P(1). Then, E[X]=A and var[X] = 1.

Chebyshev and Poisson
Let X = P(1). Then, E[X] = A and var[X] = 4. Thus,

var[X A
PriiX—A|>n] < n-£—] =z

Chebyshev and Poisson

Let X = P(1). Then, E[X]

Pr[| X —

Lik:]

= A and var[X] = 1. Thus,
Al> < var[X] iz
n

08 -

L

06

05+

04+

03+

02

0ar

X = P(\), A = 100

15

Chebyshev and Poisson (continued)
Let X = P(A). Then, E[X] =A and var[X] = A.

Chebyshev and Poisson (continued)
Let X = P(1). Then, E[X] = A and var[X] = A. By Markov’s inequality,

E[X?] 2A+2A2
2 &

PriX>a] <

Chebyshev and Poisson (continued)
Let X = P(1). Then, E[X] = A and var[X] = A. By Markov’s inequality,
E[X?] 2A+2A2
2 &
Also,ifa>A,then X>a=X-1>a-1>0

PriX > a] <

Chebyshev and Poisson (continued)
Let X = P(1). Then, E[X] = A and var[X] = A. By Markov’s inequality,
E[X?] 2A+2A2
2 &
Also,ifa>A,then X>a=X-A1>a-1>0=|X—-A|>a—A.

PriX>a] <

Chebyshev and Poisson (continued)
Let X = P(1). Then, E[X] = A and var[X] = A. By Markov’s inequality,
E[X?] 2A+2A2
2 &
Also,ifa>A,then X>a=X-A1>a-1>0=|X—-A|>a—A.
Hence, for a> 4,

PriX>a] <

Chebyshev and Poisson (continued)

Let X = P(1). Then, E[X] = A and var[X] = A. By Markov’s inequality,
E[X?] 2A+2A2
2 &
Also,ifa>A,then X>a=X-A1>a-1>0=|X—-A|>a—A.

Hence,fora> A, PriX>a| < Pr[|[X—A|>a—-A] < ﬁ

PriX>a] <

Chebyshev and Poisson (continued)
Let X = P(1). Then, E[X] = A and var[X] = A. By Markov’s inequality,

E[X?] 2A+2A2
Pr[X > a] < 2 - 2
Also,ifa>A,then X>a=X-A1>a-1>0=|X—-A|>a—A.
Hence,fora> A, PriX>a| < Pr[|[X—A|>a—-A] < ﬁ
0.7 T T T
Markov with g(z) = 2?2
0.6 k- -
A4 A2
sl “\\\ ooa?
e X =P\, A=10
04l ~_
~_
03 T~

,\\
02| - p

 (a—A)*
Pr[X > al “ ' Chebyshev

01t

—

O L i
14 16 18 20 22 24

Fraction of H’s

Here is a classical application of Chebyshev’s inequality.

Fraction of H’s

Here is a classical application of Chebyshev’s inequality.
How likely is it that the fraction of H’s differs from 50%?

Fraction of H’s

Here is a classical application of Chebyshev’s inequality.
How likely is it that the fraction of H’s differs from 50%?

Let X = 1 if the m-th flip of a fair coin is H and X, = 0 otherwise.

Fraction of H’s

Here is a classical application of Chebyshev’s inequality.
How likely is it that the fraction of H’s differs from 50%?
Let X = 1 if the m-th flip of a fair coin is H and X, = 0 otherwise.

Define

y, = Xt X +'r'"+xn

, forn>1.

Fraction of H’s

Here is a classical application of Chebyshev’s inequality.
How likely is it that the fraction of H’s differs from 50%7?
Let X = 1 if the m-th flip of a fair coin is H and X, = 0 otherwise.

Define

y, = Xt X +'r'"+xn

, forn>1.
We want to estimate

Pr[|Yn—0.5| >0.1] = Pr[Y, < 0.4 or Y, > 0.6].

Fraction of H’s

Here is a classical application of Chebyshev’s inequality.
How likely is it that the fraction of H’s differs from 50%7?
Let X = 1 if the m-th flip of a fair coin is H and X, = 0 otherwise.

Define

y, = Xt X +'r'"+xn

,forn>1.
We want to estimate
Pr[|Yn—0.5| >0.1] = Pr[Y, < 0.4 or Y, > 0.6].

By Chebyshey,

Fraction of H’s

Here is a classical application of Chebyshev’s inequality.
How likely is it that the fraction of H’s differs from 50%7?
Let X = 1 if the m-th flip of a fair coin is H and X, = 0 otherwise.

Define

y, = Xt X +'r'"+xn

,forn>1.
We want to estimate

Pr[|Yn—0.5| >0.1] = Pr[Y, < 0.4 or Y, > 0.6].
By Chebyshey,

Pr[|Y,—0.5|>0.1] < V"g’g@ = 100var[Y,).

Fraction of H’s

Here is a classical application of Chebyshev’s inequality.
How likely is it that the fraction of H’s differs from 50%7?
Let X = 1 if the m-th flip of a fair coin is H and X, = 0 otherwise.

Define

y, = Xt X +'r'"+xn

,forn>1.
We want to estimate

Pr[|Yn—0.5| >0.1] = Pr[Y, < 0.4 or Y, > 0.6].
By Chebyshey,

Pr[|Y,—0.5|>0.1] < V"g’g@ = 100var[Y,).

Now,

Fraction of H’s

Here is a classical application of Chebyshev’s inequality.
How likely is it that the fraction of H’s differs from 50%?
Let X = 1 if the m-th flip of a fair coin is H and X, = 0 otherwise.

Define

y, = Xt X +'r'"+xn

, forn>1.
We want to estimate

Pr[|Yn—0.5| >0.1] = Pr[Y, < 0.4 or Y, > 0.6].

By Chebyshey,
Pr[|Y,—0.5|>0.1] < V"g’g@ = 100var[Y,).
Now,

var{Yn] = G (var[Xi]+--- + var[Xa])

Fraction of H’s

Here is a classical application of Chebyshev’s inequality.
How likely is it that the fraction of H’s differs from 50%?
Let X = 1 if the m-th flip of a fair coin is H and X, = 0 otherwise.

Define

y, = Xt X +'r'"+xn

, forn>1.
We want to estimate

Pr[|Yn—0.5| >0.1] = Pr[Y, < 0.4 or Y, > 0.6].

By Chebyshey,
Pr[|Y,—0.5|>0.1] < V"g’g@ = 100var[Y,).
Now,

var{Yy] = 5 (var[Xi]+ -+ var[Xs]) = jvar[Xi]

Fraction of H’s

Here is a classical application of Chebyshev’s inequality.
How likely is it that the fraction of H’s differs from 50%?
Let X = 1 if the m-th flip of a fair coin is H and X, = 0 otherwise.

Define

y, = Xt X +'r'"+xn

, forn>1.
We want to estimate

Pr[|Yn—0.5| >0.1] = Pr[Y, < 0.4 or Y, > 0.6].

By Chebyshey,
Pr[|Y,—0.5|>0.1] < V"g’g@ = 100var[Y,).
Now,

var[Yy] = 5 (var[Xi]+--- + var{Xs]) = var[X;] < z5.

Fraction of H’s

Here is a classical application of Chebyshev’s inequality.
How likely is it that the fraction of H’s differs from 50%?
Let X = 1 if the m-th flip of a fair coin is H and X, = 0 otherwise.

Define

y, = Xt X +'r'"+xn

, forn>1.
We want to estimate

Pr[|Yn—0.5| >0.1] = Pr[Y, < 0.4 or Y, > 0.6].

By Chebyshey,
Pr[|Y,—0.5|>0.1] < V"g’g@ = 100var[Y,).
Now,

var[Yy] = 5 (var[Xi]+--- + var{Xs]) = var[X;] < z5.
Var(X;) = p(1—1Ip) < (:5)(.5) =4

Fraction of H’s

,forn>1.

Pr{|Y,—0.5/ > 0.1] < %

Fraction of H’s

Yn

:w,fornZ‘]'

Pr[|Y,—0.5| >0.1] < %

For n= 1,000, we find that this probability is less than 2.5%.

Fraction of H’s

Yn

:w,fornZ‘]'

Pr[|Y,—0.5| >0.1] < %

For n= 1,000, we find that this probability is less than 2.5%.
As n — oo, this probability goes to zero.

Fraction of H’s

Yn

:w,fornZ‘]'

Pr[|Y,—0.5| >0.1] < %

For n= 1,000, we find that this probability is less than 2.5%.
As n — oo, this probability goes to zero.
In fact, for any € > 0,

Fraction of H’s

,forn>1.

Pr[|Y,—0.5| >0.1] < %

For n= 1,000, we find that this probability is less than 2.5%.
As n — oo, this probability goes to zero.
In fact, for any € > 0, as n — o,

Fraction of H’s

Xyt Xy
N n

Yn ,forn>1.

Pr[|Y,—0.5| >0.1] < %

For n= 1,000, we find that this probability is less than 2.5%.

As n — oo, this probability goes to zero.

In fact, for any € > 0, as n — «, the probability that the fraction of Hs
is within € > 0 of 50% approaches 1:

Fraction of H’s

Xyt Xy
N n

Yn ,forn>1.

Pr[|Y,—0.5| >0.1] < %

For n= 1,000, we find that this probability is less than 2.5%.
As n — oo, this probability goes to zero.

In fact, for any € > 0, as n — «, the probability that the fraction of Hs
is within € > 0 of 50% approaches 1:

Pr[|Yn—0.5]|<g] —1.

Fraction of H’s

Xyt Xy
N n

Yn ,forn>1.

Pr[|Y,—0.5| >0.1] < %

For n= 1,000, we find that this probability is less than 2.5%.
As n — oo, this probability goes to zero.

In fact, for any € > 0, as n — «, the probability that the fraction of Hs
is within € > 0 of 50% approaches 1:

Pr[|Yn—0.5]|<g] —1.

This is an example of the Law of Large Numbers.

Fraction of H’s

Xyt Xy
N n

Yn ,forn>1.

Pr[|Y,—0.5| >0.1] < %

For n= 1,000, we find that this probability is less than 2.5%.
As n — oo, this probability goes to zero.

In fact, for any € > 0, as n — «, the probability that the fraction of Hs
is within € > 0 of 50% approaches 1:

Pr[|Yn—0.5]|<g] —1.

This is an example of the Law of Large Numbers.
We look at a calculation of this next.

Weak Law of Large Numbers

Theorem Weak Law of Large Numbers

Weak Law of Large Numbers

Theorem Weak Law of Large Numbers

Let X1, Xo,... be pairwise independent with the same distribution and
mean u.

Weak Law of Large Numbers

Theorem Weak Law of Large Numbers

Let X1, Xo,... be pairwise independent with the same distribution and
mean u. Then, for all € > 0,

Pyt

—ul>¢€]—0, as n—oo.

Weak Law of Large Numbers

Theorem Weak Law of Large Numbers

Let X1, Xo,... be pairwise independent with the same distribution and
mean u. Then, for all € > 0,

Pr[|w—u|ze]—>0, as n— oo.
n

Proof:
Let Y, = M Then

Weak Law of Large Numbers

Theorem Weak Law of Large Numbers

Let X1, Xo,... be pairwise independent with the same distribution and
mean u. Then, for all € > 0,

Pr[|w—u|ze]—>0, as n— oo.
n

Proof:
Let Y, = M Then

var[Y]

PrlYa—ulze] < 2

Weak Law of Large Numbers

Theorem Weak Law of Large Numbers

Let X1, Xo,... be pairwise independent with the same distribution and
mean u. Then, for all € > 0,

Pr[|w—u|ze]—>0, as n— oo.
n

Proof:
Let Y, = M Then

var[Yp] _ var[Xi+---+ Xp

Pf[|Yn—ﬂ|Z€] < 82 n2£2

Weak Law of Large Numbers

Theorem Weak Law of Large Numbers

Let X1, Xo,... be pairwise independent with the same distribution and
mean u. Then, for all € > 0,

Pr[|w—u|ze]—>0, as n— oo.
n

Proof:
Let Y, = M Then

var[Yp] _ var[Xi+---+ Xp
2 n2e2
nvar[Xi]
n2e2

Pr{|Yn—u| > ¢]

IN

Weak Law of Large Numbers

Theorem Weak Law of Large Numbers

Let X1, Xo,... be pairwise independent with the same distribution and
mean u. Then, for all € > 0,

Pr[|w—u|ze]—>0, as n— oo.
n

Proof:
Let Y, = M Then

var[Yp] _ var[Xi+---+ Xp
e ne2
nvar[Xi] var[Xi]

nle2 ne2

Pr{|Yn—u| > ¢]

IN

Weak Law of Large Numbers

Theorem Weak Law of Large Numbers

Let X1, Xo,... be pairwise independent with the same distribution and
mean u. Then, for all € > 0,

Pr[|w—u|ze]—>0, as n— oo.
n

Proof:
Let Y, = M Then

var[Yp] _ var[Xi+---+ Xp
2 n2e2
nvar[Xi] var[Xi]
2

Pr{|Yn—u| > ¢]

IN

— 0, as N — oo.
nle2 ne ’

Weak Law of Large Numbers

Theorem Weak Law of Large Numbers

Let X1, Xo,... be pairwise independent with the same distribution and
mean u. Then, for all € > 0,

Pr[|w—u|ze]—>0, as n— oo.
n

Proof:
Let Y, = M Then

var[Yp] _ var[Xi+---+ Xp

Pf[|Yn—ﬂ|Z€] < £2 n2e2
_ nvar[Xi] _ var[Xi] 10,881 oo,
n2e2 ne2

Summary

’ Variance; Inequalities; WLLN

Summary

’ Variance; Inequalities; WLLN ‘

» Variance: var[X]:= E[(X — E[X])?] = E[X?] - E[X]?

Summary

’ Variance; Inequalities; WLLN ‘

» Variance: var[X]:= E[(X — E[X])?] = E[X?] - E[X]?
» Fact: var[aX +b] = avar[X]

Summary

‘ Variance; Inequalities; WLLN ‘

» Variance: var[X]:= E[(X — E[X])?] = E[X?] - E[X]?
» Fact: var[aX +b] = avar[X]
» Sum: X,Y,Zpairwise ind. = var[X+Y+Z]=---

Summary

‘ Variance; Inequalities; WLLN ‘

v

Variance: var[X]:= E[(X — E[X])?] = E[X?] - E[X]?
Fact: var[aX + b] = &2var[X]

v

v

Sum: X,Y,Z pairwise ind. = var[X+Y+Z]="--
Markov: Pr[X > a] < E[f(X)]/f(a) where ...

v

Summary

‘ Variance; Inequalities; WLLN ‘

v

Variance: var[X]:= E[(X — E[X])?] = E[X?] - E[X]?
Fact: var[aX + b] = &2var[X]

v

v

Sum: X,Y,Z pairwise ind. = var[X+Y+Z]="--
Markov: Pr[X > a] < E[f(X)]/f(a) where ...
Chebyshev: Pr[|X — E[X]| > a] < var[X]/&®

v

v

Summary

‘ Variance; Inequalities; WLLN ‘

v

Variance: var[X]:= E[(X — E[X])?] = E[X?] - E[X]?
Fact: var[aX + b] = &2var[X]

v

v

Sum: X,Y,Z pairwise ind. = var[X+Y+Z]="--
Markov: Pr[X > a] < E[f(X)]/f(a) where ...
Chebyshev: Pr[|X — E[X]| > a] < var[X]/&®
WLLN: X i.i.d. = X545 & E[X]

v

v

v

Probability: Midterm 2 Review.

» Framework:

» Probability Space

» Conditional Probability & Bayes’ Rule
» Independence

» Mutual Independence

Review: Probability Space

Sample Space

) e
j Z Prlw] =1

‘mmples (()utmmes

Review: Probability Space

Sample Space

Fraction p;
of circumference

Review: Probability Space

Sample Space

Prl{A|B] = Pr[An B]/Pr[B].
PriANBNC]
= Pr{A|Pr[B|A|Pr[C|ANB].

Fraction p;
of circumference

Review: Probability Space

Sample Space

Prl{A|B] = Pr[An B]/Pr[B].
PriANBNC]
= Pr{A|Pr[B|A|Pr[C|ANB].

Fraction p;
of circumference

Review: Bayes’ Rule

Review: Bayes’ Rule

» Priors: Pr[Ap] =pn,n=1,....M

Review: Bayes’ Rule

» Priors: Pr[Ap] =pn,n=1,....M
» Conditional Probabilities: Pr[B|A;]l =gn,n=1,...,N

Review: Bayes’ Rule

» Priors: Pr[Ap] =pn,n=1,....M

» Conditional Probabilities: Pr[B|As] = qn,n=1,...

Review: Bayes’ Rule

» Priors: Pr[Ap] =pn,n=1,....M
» Conditional Probabilities: Pr[B|A;]l =gn,n=1,...,N

DN : qN e
PN QAv Ay, ... Ay disjoint

Ay AN AIU“'UAN:Q

--------- A
plI < i IAl 1
| :A q1 pn = Pr[A,]
p”I Il é;? IAm Pn . Qn B n :P,[B|A"]

Bayes’ Rule: Examples

Bayes’ Rule: Examples

Let p}, = Pr[An|B] be the posterior probabilities.

Bayes’ Rule: Examples

Let p}, = Pr[An|B] be the posterior probabilities.
Thus, p, = PnQn/(P1G1 + -+ PNGh).-

Questions: Is it true that

Bayes’ Rule: Examples

Let p}, = Pr[An|B] be the posterior probabilities.
Thus, p, = PnQn/(P1G1 + -+ PNGh).-

Questions: Is it true that

» if gn > qx, then pf, > p?

Bayes’ Rule: Examples

Let p}, = Pr[An|B] be the posterior probabilities.
Thus, p, = PnQn/(P1G1 + -+ PNGh).-

Questions: Is it true that

» if gn > qx, then pj, > pj? Not necessarily.

Bayes’ Rule: Examples

Let p}, = Pr[An|B] be the posterior probabilities.
Thus, p, = PnGn/(P1G1 + -+ + PN Gn)-
Questions: Is it true that

» if gn > qx, then pj, > pj? Not necessarily.

> if pp > pg, then p, > p).?

Bayes’ Rule: Examples

Let p}, = Pr[An|B] be the posterior probabilities.
Thus, p, = PnGn/(P1G1 + -+ + PN Gn)-
Questions: Is it true that

» if gn > qx, then pj, > pj? Not necessarily.

> if pp > pk, then p, > p ? Not necessarily.

Bayes’ Rule: Examples

Let p}, = Pr[An|B] be the posterior probabilities.
Thus, p, = PnQn/(P1G1 + -+ PNGh).-

Questions: Is it true that

» if gn > qx, then pj, > pj? Not necessarily.
> if pp > pk, then p, > p ? Not necessarily.

> if pp > px and gn > g, then p;, > p ?

Bayes’ Rule: Examples

Let p}, = Pr[An|B] be the posterior probabilities.
Thus, p, = PnQn/(P1G1 + -+ PNGh).-

Questions: Is it true that

» if gn > qx, then pj, > pj? Not necessarily.
> if pp > pk, then p, > p ? Not necessarily.

> if pp > px and gn > g, then p, > p ? Yes.

Bayes’ Rule: Examples

Let p}, = Pr[An|B] be the posterior probabilities.
Thus, p, = PnQn/(P1G1 + -+ PNGh).-

Questions: Is it true that

» if gn > qx, then pj, > pj? Not necessarily.
> if pp > pk, then p, > p ? Not necessarily.
> if pp > px and gn > g, then p, > p ? Yes.
» if g, =1, then p}, > 0?

Bayes’ Rule: Examples

Let p}, = Pr[An|B] be the posterior probabilities.
Thus, p, = PnQn/(P1G1 + -+ PNGh).-

Questions: Is it true that

» if gn > qx, then pj, > pj? Not necessarily.
> if pp > pk, then p, > p ? Not necessarily.
> if pp > px and gn > g, then p, > p ? Yes.
» if g, =1, then p}, > 0? Not necessarily.

Bayes’ Rule: Examples

Let p}, = Pr[An|B] be the posterior probabilities.
Thus, p, = PnQn/(P1G1 + -+ PNGh).-

Questions: Is it true that

» if gn > qx, then pj, > pj? Not necessarily.
> if pp > pk, then p, > p ? Not necessarily.
> if pp > px and gn > g, then p, > p ? Yes.
» if g, =1, then p}, > 0? Not necessarily.
> if p, =1/N for all n, then MLE = MAP?

Bayes’ Rule: Examples

Let p}, = Pr[An|B] be the posterior probabilities.
Thus, p, = PnQn/(P1G1 + -+ PNGh).-

Questions: Is it true that

» if gn > qx, then pj, > pj? Not necessarily.

> if pp > pk, then p, > p ? Not necessarily.

> if pp > px and gn > g, then p, > p ? Yes.
» if g, =1, then p}, > 0? Not necessarily.

> if p, =1/N for all n, then MLE = MAP? Yes.

Review: Independence

Review: Independence
¥
"

€ : Uniform
Die 2 B ‘red die is 1’

o
°
©
<@
e
e}

“First coin yields 1” and "Sum is 7” are
independent

Review: Independence

€ : Uniform
Die 2 B = ‘reddieis I’

Pairwise, but not mutually

A= {(1,6),...,(6,1)}
B={(1,1)....,(1.6)}

A =‘sumis 7’

“First coin yields 1” and "Sum is 7” are
independent

Review: Independence

wa
it

€ : Uniform
Die 2 B

‘red die is 1’

O Q=

‘sum is 77

“First coin yields 1” and "Sum is 7” are
independent

Pairwise, but not mutually

If {A;,i € J} are mutually independent,
then [A; N Ag]AAs and Ay \ As are
independent.

Our intuitive meaning of “independent
events” is mutual independence.

Review: Independence

Review: Independence

Recall

Review: Independence

Recall

» Aand B are independent if Pr{[An B] = Pr[A]Pr[B].

Review: Independence

Recall

» Aand B are independent if Pr{[An B] = Pr[A]Pr[B].

> {A;,j € J} are mutually independent if
Pr[mjeKAj] = I'IjEKPr[A/-],V finite K C J.

Review: Independence

Recall

» Aand B are independent if Pr{[An B] = Pr[A]Pr[B].

> {A;,j € J} are mutually independent if
Pr[mjeKAj] = I'IjEKPr[A/-],V finite K C J.

Thus, A, B, C, D are mutually independent if there are

» independent 2 by 2:
Pr[AnB] = Pr[A]Pr[B],...,Pr[Cn D] = Pr[C]Pr[D]

Review: Independence

Recall

» Aand B are independent if Pr{[An B] = Pr[A]Pr[B].

> {A;,j € J} are mutually independent if
Pr[mjeKAj] = I'IjEKPr[A/-],V finite K C J.

Thus, A, B, C, D are mutually independent if there are

» independent 2 by 2:
Prl[An B] = Pr[A|Pr[B],...,Pr[Cn D] = Pr[C]Pr|D]

> by 3: PrfJAnBN C] = Pr[A]|Pr[B]Pr[C],...,Pr[BNCND] =
Pr[B]Pr[C]Pr[D]

Review: Independence

Recall

» Aand B are independent if Pr{[An B] = Pr[A]Pr[B].

> {A;,j € J} are mutually independent if
Pr[mjeKAj] = I'IjEKPr[A/-],V finite K C J.

Thus, A, B, C, D are mutually independent if there are

» independent 2 by 2:
Pr[AnB] = Pr[A]Pr[B],...,Pr[Cn D] = Pr[C]Pr[D]

> by 3: PrfJAnBN C] = Pr[A]|Pr[B]Pr[C],...,Pr[BNCND] =
Pr[B]Pr|C]Pr[D]

> by 4: PrfJAnBnN CnN D] = Pr[A|Pr[B]|Pr[C]Pr[D].

Independence: Question

Independence: Question

Consider the uniform probability
space and the events A, B, C, D.

Independence: Question

Consider the uniform probability
space and the events A, B, C, D.

Independence: Question

Consider the uniform probability
space and the events A, B, C, D.

Which maximal collections of events among A, B, C, D are pairwise
independent?

Independence: Question

Consider the uniform probability
space and the events A, B, C, D.

Which maximal collections of events among A, B, C, D are pairwise
independent?

{A,B,C},

Independence: Question

Consider the uniform probability
space and the events A, B, C, D.

Which maximal collections of events among A, B, C, D are pairwise
independent?

{A.B.C}, and {B,C,D}

Independence: Question

Consider the uniform probability
space and the events A, B, C, D.

Which maximal collections of events among A, B, C, D are pairwise
independent?

{A,B,C}, and {B,C,D}

Can you find three events among A, B, C, D that are mutually
independent?

Independence: Question

Consider the uniform probability
space and the events A, B, C, D.

Which maximal collections of events among A, B, C, D are pairwise
independent?

{A.B,C}, and {B,C, D}

Can you find three events among A, B, C, D that are mutually
independent?

No: We would need an outcome with probability 1/8.

Review: Collisions & Collecting

Collisions:

. _m2
Pr[no collision] ~ ¢~ /2"

Review: Collisions & Collecting

Collisions:
—m2/2n

Pr[no collision] ~ e
Collecting:
Prlmiss Wilson] ~ e~™/"

Pr[miss at least one] < ne~ /"

Review: Math Tricks

Approximations:

Review: Math Tricks

Approximations:

In(1—¢)~ —¢

Review: Math Tricks

Approximations:

In(1—¢)~ —¢
exp{—¢e}t~1-—¢

Review: Math Tricks

Approximations:

In(1—¢)~ —¢
exp{—¢e}t~1-—¢

Sums:

Review: Math Tricks

Approximations:

In(1—¢)~ —¢
exp{—¢e}t~1-—¢

Sums:

(a+b)" = zn: (;;) arp™m

m=0

n(n+1)

142+ 4n=—"

Math Tricks, continued
Symmetry:

Math Tricks, continued
Symmetry: E.g., if we pick balls from a bag,

Math Tricks, continued

Symmetry: E.g., if we pick balls from a bag, with no replacement,

Pr[ball 5 is red] = Pr{ball 1 is red]

Math Tricks, continued

Symmetry: E.g., if we pick balls from a bag, with no replacement,
Pr[ball 5 is red] = Pr{ball 1 is red]

Order of balls = permutation.

Math Tricks, continued

Symmetry: E.g., if we pick balls from a bag, with no replacement,
Prlball 5 is red] = Prball 1 is red]

Order of balls = permutation.
All permutations have same probability.

Math Tricks, continued
Symmetry: E.g., if we pick balls from a bag, with no replacement,

Prlball 5 is red] = Prball 1 is red]

Order of balls = permutation.

All permutations have same probability.
Union Bound:

PrlfAUBUC] < Pr[A]+ Pr[B] + Pr[C]

Math Tricks, continued

Symmetry: E.g., if we pick balls from a bag, with no replacement,
Prlball 5 is red] = Prball 1 is red]

Order of balls = permutation.

All permutations have same probability.
Union Bound:

PrlfAUBUC] < Pr[A]+ Pr[B] + Pr[C]

Inclusion/Exclusion:

Pr[Au B| = Pr[A]+ Pr[B] — Pr[An B]

Math Tricks, continued

Symmetry: E.g., if we pick balls from a bag, with no replacement,
Prlball 5 is red] = Prball 1 is red]

Order of balls = permutation.

All permutations have same probability.
Union Bound:

PrlfAUBUC] < Pr[A]+ Pr[B] + Pr[C]
Inclusion/Exclusion:

PrlAUB] = Pr[Al+ Pr[B] - Prl[An B]
Total Probability:

Pr[B] = Pr[A{]Pr|B|A1] +--- + Pr[An] Pr[B|An]

Math Tricks, continued

Symmetry: E.g., if we pick balls from a bag, with no replacement,
Prlball 5 is red] = Prball 1 is red]

Order of balls = permutation.

All permutations have same probability.
Union Bound:

PrlfAUBUC] < Pr[A]+ Pr[B] + Pr[C]

Inclusion/Exclusion:

Pr[Au B| = Pr[A]+ Pr[B] — Pr[An B]

Total Probability:

Pr[B] = Pr[A{]Pr|B|A1] +--- + Pr[An] Pr[B|An]

An [?-bounded martingale converges almost surely.

Math Tricks, continued

Symmetry: E.g., if we pick balls from a bag, with no replacement,
Prlball 5 is red] = Prball 1 is red]

Order of balls = permutation.

All permutations have same probability.
Union Bound:

PrlfAUBUC] < Pr[A]+ Pr[B] + Pr[C]

Inclusion/Exclusion:

Pr[Au B| = Pr[A]+ Pr[B] — Pr[An B]

Total Probability:

Pr[B] = Pr[A{]Pr|B|A1] +--- + Pr[An] Pr[B|An]

An [?-bounded martingale converges almost surely. Just kidding!

A mini-quizz

True or False:

> Pr[AuB] = Pr[A]+ Pr[B].

A mini-quizz

True or False:

» Pr[AUB] = Pr[A]+ Pr|[B]. False

A mini-quizz

True or False:

> Pr[AuU B] = Pr[A] + Pr[B]. False True iff disjoint.

A mini-quizz

True or False:

> Pr[AuU B] = Pr[A] + Pr[B]. False True iff disjoint.
> Pr[AnB] = Pr[A]Pr[B].

A mini-quizz

True or False:

> Pr[AuU B] = Pr[A] + Pr[B]. False True iff disjoint.
> Pr[AnB] = Pr[A]Pr[B]. False

A mini-quizz

True or False:

> Pr[AuU B] = Pr[A] + Pr[B]. False True iff disjoint.
> Pr[AnB] = Pr[A]Pr|[B]. False True iff independent.

A mini-quizz

True or False:
> Pr[AuU B] = Pr[A] + Pr[B]. False True iff disjoint.
> Pr[AnB] = Pr[A]Pr|[B]. False True iff independent.
» AnB=0= A, B independent.

A mini-quizz

True or False:
> Pr[AuU B] = Pr[A] + Pr[B]. False True iff disjoint.
> Pr[AnB] = Pr[A]Pr|[B]. False True iff independent.
» ANB=0= A, Bindependent. False

A mini-quizz

True or False:
> Pr[AuU B] = Pr[A] + Pr[B]. False True iff disjoint.
> Pr[AnB] = Pr[A]Pr|[B]. False True iff independent.
» ANB=0= A, Bindependent. False
» For all A, B, one has Pr[A|B] > Pr[A].

A mini-quizz

True or False:
> Pr[AuU B] = Pr[A] + Pr[B]. False True iff disjoint.
> Pr[AnB] = Pr[A]Pr|[B]. False True iff independent.
» ANB=0= A, Bindependent. False
» For all A, B, one has Pr[A|B] > Pr[A]. False

A mini-quizz

True or False:
> Pr[AuU B] = Pr[A] + Pr[B]. False True iff disjoint.
> Pr[AnB] = Pr[A]Pr|[B]. False True iff independent.
» ANB=0= A, Bindependent. False
» For all A, B, one has Pr[A|B] > Pr[A]. False
> Pr[AnBN C] = Pr[A]|Pr[B|A]Pr[C|B].

A mini-quizz

True or False:
> Pr[AuU B] = Pr[A] + Pr[B]. False True iff disjoint.
> Pr[AnB] = Pr[A]Pr|[B]. False True iff independent.
» ANB=0= A, Bindependent. False
» For all A, B, one has Pr[A|B] > Pr[A]. False
» Pr[ANBNC] = Pr[A|Pr[B|A|Pr[C|B]. False

A mini-quizz

True or False:
> Pr[AuU B] = Pr[A] + Pr[B]. False True iff disjoint.
> Pr[AnB] = Pr[A]Pr|[B]. False True iff independent.
» ANB=0= A, Bindependent. False
» For all A, B, one has Pr[A|B] > Pr[A]. False
» Pr[ANBNC] = Pr[A|Pr[B|A|Pr[C|B]. False

A mini-quizz; part 2

> Q={1,2,3,4}, uniform.

A mini-quizz; part 2

» Q={1,2,8,4}, uniform. Find events A, B, C that are pairwise
independent, not mutually.

A mini-quizz; part 2

» Q={1,2,8,4}, uniform. Find events A, B, C that are pairwise
independent, not mutually.

A={1,2},B={1,3},C={1,4}.

A mini-quizz; part 2

» Q={1,2,8,4}, uniform. Find events A, B, C that are pairwise
independent, not mutually.

A={1,2},B={1,3},C={1,4}.

» A, B, C pairwise independent.

A mini-quizz; part 2

» Q={1,2,8,4}, uniform. Find events A, B, C that are pairwise
independent, not mutually.

A={1,2},B={1,3},C={1,4}.

» A, B, C pairwise independent. Is it true that (AN B) and C are
independent?

A mini-quizz; part 2

» Q={1,2,8,4}, uniform. Find events A, B, C that are pairwise
independent, not mutually.

A={1,2},B={1,3},C={1,4}.

» A, B, C pairwise independent. Is it true that (AN B) and C are
independent?

No.

A mini-quizz; part 2

» Q={1,2,8,4}, uniform. Find events A, B, C that are pairwise
independent, not mutually.

A={1,2},B={1,3},C={1,4}.

» A, B, C pairwise independent. Is it true that (AN B) and C are
independent?

No. In example above, PrfAn BN C] # Pr[An B]Pr[C].

A mini-quizz; part 2

» Q={1,2,8,4}, uniform. Find events A, B, C that are pairwise
independent, not mutually.

A={1,2},B={1,3},C={1,4}.

» A, B, C pairwise independent. Is it true that (AN B) and C are
independent?

No. In example above, PrfAn BN C] # Pr[An B]Pr[C].
» Assume Pr[C|A] > Pr[C|B].

A mini-quizz; part 2

» Q={1,2,8,4}, uniform. Find events A, B, C that are pairwise
independent, not mutually.

A={1,2},B={1,3},C={1,4}.

» A, B, C pairwise independent. Is it true that (AN B) and C are
independent?

No. In example above, PrfAn BN C] # Pr[An B]Pr[C].
» Assume Pr[C|A] > Pr[C|B].
Is it true that Pr[A|C] > Pr[B|C]?

A mini-quizz; part 2

» Q={1,2,8,4}, uniform. Find events A, B, C that are pairwise
independent, not mutually.

A={1,2},B={1,3},C={1,4}.

» A, B, C pairwise independent. Is it true that (AN B) and C are
independent?

No. In example above, PrfAn BN C] # Pr[An B]Pr[C].
» Assume Pr[C|A] > Pr[C|B].
Is it true that Pr[A|C] > Pr[B|C]?
No.

» Deal two cards from a 52-card deck.

A mini-quizz; part 2

v

Q={1,2,3,4}, uniform. Find events A, B, C that are pairwise
independent, not mutually.

A={1,2},B={1,3},C={1,4}.

» A, B, C pairwise independent. Is it true that (AN B) and C are
independent?

No. In example above, PrfAn BN C] # Pr[An B]Pr[C].
» Assume Pr[C|A] > Pr[C|B].
Is it true that Pr[A|C] > Pr[B|C]?
No.

» Deal two cards from a 52-card deck. What is the probability that
the value of the first card is strictly larger than that of the
second?

Pr[same] = &.

A mini-quizz; part 2

v

Q={1,2,3,4}, uniform. Find events A, B, C that are pairwise
independent, not mutually.

A={1,2},B={1,3},C={1,4}.

» A, B, C pairwise independent. Is it true that (AN B) and C are
independent?

No. In example above, PrfAn BN C] # Pr[An B]Pr[C].
» Assume Pr[C|A] > Pr[C|B].
Is it true that Pr[A|C] > Pr[B|C]?
No.

» Deal two cards from a 52-card deck. What is the probability that
the value of the first card is strictly larger than that of the
second?

Pr[same] = &. Pr[different] = £3.

A mini-quizz; part 2

v

Q={1,2,3,4}, uniform. Find events A, B, C that are pairwise
independent, not mutually.

A={1,2},B={1,3},C={1,4}.

» A, B, C pairwise independent. Is it true that (AN B) and C are
independent?

No. In example above, PrfAn BN C] # Pr[An B]Pr[C].
» Assume Pr[C|A] > Pr[C|B].
Is it true that Pr[A|C] > Pr[B|C]?
No.

» Deal two cards from a 52-card deck. What is the probability that
the value of the first card is strictly larger than that of the
second?

Pr[same] = &. Pr[different] = £3. Pr[first > second] = £.

Discrete Math:Review

Modular Arithmetic Inverses and GCD

x has inverse modulo mif and only if ged(x,m) =1.

Modular Arithmetic Inverses and GCD

x has inverse modulo mif and only if ged(x,m) =1.
Group structures more generally.

Modular Arithmetic Inverses and GCD

x has inverse modulo mif and only if ged(x,m) =1.
Group structures more generally.

Proof Idea:
{0x,...,(m—1)x} are distinct modulo m if and only if gcd(x,m) =1.

Modular Arithmetic Inverses and GCD

x has inverse modulo mif and only if ged(x,m) =1.
Group structures more generally.

Proof Idea:
{0x,...,(m—1)x} are distinct modulo m if and only if gcd(x,m) =1.
Finding gcd.

Modular Arithmetic Inverses and GCD

x has inverse modulo mif and only if ged(x,m) =1.
Group structures more generally.

Proof ldea:
{0x,...,(m—1)x} are distinct modulo m if and only if gcd(x, m) =1.
Finding gcd.

ged(x,y) =ged(y.x—y)

Modular Arithmetic Inverses and GCD

x has inverse modulo mif and only if ged(x,m) =1.
Group structures more generally.

Proof ldea:
{0x,...,(m—1)x} are distinct modulo m if and only if gcd(x, m) =1.
Finding gcd.

ged(x,y) =ged(y,x —y) = ged(y,x (mod y)).

Modular Arithmetic Inverses and GCD

x has inverse modulo mif and only if ged(x,m) =1.
Group structures more generally.

Proof Idea:
{0x,...,(m—1)x} are distinct modulo m if and only if gcd(x, m) =1.
Finding gcd.
ged(x,y) =ged(y,x —y) =ged(y,x (mod y)).
Give recursive Algorithm!

Modular Arithmetic Inverses and GCD

x has inverse modulo mif and only if ged(x,m) =1.
Group structures more generally.

Proof Idea:
{0x,...,(m—1)x} are distinct modulo m if and only if gcd(x, m) =1.
Finding gcd.
ged(x,y) =ged(y,x —y) =ged(y,x (mod y)).
Give recursive Algorithm! Base Case?

Modular Arithmetic Inverses and GCD

x has inverse modulo mif and only if ged(x,m) =1.
Group structures more generally.

Proof Idea:
{0x,...,(m—1)x} are distinct modulo m if and only if gcd(x, m) =1.
Finding gcd.
ged(x,y) =ged(y,x —y) =ged(y,x (mod y)).
Give recursive Algorithm! Base Case? gcd(x,0) = x.

Modular Arithmetic Inverses and GCD

x has inverse modulo mif and only if ged(x,m) =1.
Group structures more generally.

Proof Idea:
{0x,...,(m—1)x} are distinct modulo m if and only if gcd(x,m) =1.

Finding gcd.

ged(x,y) = ged(y,x —y) = ged(y,x (mod y)).
Give recursive Algorithm! Base Case? gcd(x,0) = x.
Extended-gcd(x, y)

Modular Arithmetic Inverses and GCD

x has inverse modulo mif and only if ged(x,m) =1.
Group structures more generally.

Proof Idea:
{0x,...,(m—1)x} are distinct modulo m if and only if gcd(x,m) =1.

Finding gcd.

ged(x,y) = ged(y,x—y) = ged(y,x (mod y)).
Give recursive Algorithm! Base Case? gcd(x,0) = x.
Extended-gcd(x, y) returns (d, a, b)

Modular Arithmetic Inverses and GCD

x has inverse modulo mif and only if ged(x,m) =1.
Group structures more generally.

Proof Idea:
{0x,...,(m—1)x} are distinct modulo m if and only if gcd(x, m) =1.
Finding gcd.
ged(x,y) =ged(y,x —y) =ged(y,x (mod y)).
Give recursive Algorithm! Base Case? gcd(x,0) = x.

Extended-gcd(x, y) returns (d, a, b)
d=gcd(x,y)

Modular Arithmetic Inverses and GCD

x has inverse modulo mif and only if ged(x,m) =1.
Group structures more generally.

Proof Idea:
{0x,...,(m—1)x} are distinct modulo m if and only if gcd(x, m) =1.
Finding gcd.
ged(x,y) =ged(y,x —y) =ged(y,x (mod y)).
Give recursive Algorithm! Base Case? gcd(x,0) = x.

Extended-gcd(x, y) returns (d, a, b)
d=gcd(x,y) and d = ax+ by

Modular Arithmetic Inverses and GCD

x has inverse modulo mif and only if ged(x,m) =1.
Group structures more generally.

Proof Idea:
{0x,...,(m—1)x} are distinct modulo m if and only if gcd(x, m) =1.
Finding gcd.
ged(x,y) =ged(y,x —y) =ged(y,x (mod y)).
Give recursive Algorithm! Base Case? gcd(x,0) = x.

Extended-gcd(x, y) returns (d, a, b)
d=gcd(x,y) and d = ax+ by

Multiplicative inverse of (x,m).

Modular Arithmetic Inverses and GCD

x has inverse modulo mif and only if ged(x,m) =1.
Group structures more generally.

Proof Idea:
{0x,...,(m—1)x} are distinct modulo m if and only if gcd(x, m) =1.
Finding gcd.
ged(x,y) =ged(y,x —y) =ged(y,x (mod y)).
Give recursive Algorithm! Base Case? gcd(x,0) = x.

Extended-gcd(x, y) returns (d, a, b)
d=gcd(x,y) and d = ax+ by

Multiplicative inverse of (x,m).
eged(x, m) = (1,a,b)

Modular Arithmetic Inverses and GCD

x has inverse modulo mif and only if ged(x,m) =1.
Group structures more generally.

Proof Idea:
{0x,...,(m—1)x} are distinct modulo m if and only if gcd(x, m) =1.
Finding gcd.

ged(x,y) =ged(y,x —y) =ged(y,x (mod y)).
Give recursive Algorithm! Base Case? gcd(x,0) = x.
Extended-gcd(x, y) returns (d, a, b)

d=gcd(x,y) and d = ax+ by
Multiplicative inverse of (x,m).

egcd(x,m) = (1,a,b)
ais inverse!

Modular Arithmetic Inverses and GCD

x has inverse modulo mif and only if ged(x,m) =1.
Group structures more generally.

Proof Idea:
{0x,...,(m—1)x} are distinct modulo m if and only if gcd(x, m) =1.
Finding gcd.

ged(x,y) =ged(y,x —y) =ged(y,x (mod y)).
Give recursive Algorithm! Base Case? gcd(x,0) = x.
Extended-gcd(x, y) returns (d, a, b)

d=gcd(x,y) and d = ax+ by
Multiplicative inverse of (x,m).

egcd(x,m) = (1,a,b)
aisinverse! 1 =ax+bm

Modular Arithmetic Inverses and GCD

x has inverse modulo mif and only if ged(x,m) =1.
Group structures more generally.

Proof Idea:
{0x,...,(m—1)x} are distinct modulo m if and only if gcd(x, m) =1.
Finding gcd.

ged(x,y) = ged(y,x —y) = ged(y,x (mod y)).
Give recursive Algorithm! Base Case? gcd(x,0) = x.
Extended-gcd(x, y) returns (d, a, b)

d=gcd(x,y) and d = ax+ by
Multiplicative inverse of (x,m).

egcd(x,m)=(1,a,b)
aisinverse! 1 = ax+bm= ax (mod m).

Modular Arithmetic Inverses and GCD

x has inverse modulo mif and only if ged(x,m) =1.
Group structures more generally.

Proof Idea:
{0x,...,(m—1)x} are distinct modulo m if and only if gcd(x, m) =1.
Finding gcd.
ged(x,y) =ged(y,x —y) =ged(y,x (mod y)).
Give recursive Algorithm! Base Case? gcd(x,0) = x.

Extended-gcd(x, y) returns (d, a, b)
d=gcd(x,y) and d = ax+ by
Multiplicative inverse of (x,m).
egcd(x,m) = (1,a,b)
aisinverse! 1 = ax+bm= ax (mod m).

Idea: egcd.

Modular Arithmetic Inverses and GCD

x has inverse modulo mif and only if ged(x,m) =1.
Group structures more generally.

Proof Idea:
{0x,...,(m—1)x} are distinct modulo m if and only if gcd(x, m) =1.
Finding gcd.

ged(x,y) = ged(y,x —y) = ged(y,x (mod y)).
Give recursive Algorithm! Base Case? gcd(x,0) = x.
Extended-gcd(x, y) returns (d, a, b)

d=gcd(x,y) and d = ax+ by
Multiplicative inverse of (x,m).

egcd(x,m)=(1,a,b)
aisinverse! 1 = ax+bm= ax (mod m).

Idea: egcd.
gcd produces 1

Modular Arithmetic Inverses and GCD

x has inverse modulo mif and only if ged(x,m) =1.
Group structures more generally.

Proof Idea:
{0x,...,(m—1)x} are distinct modulo m if and only if gcd(x, m) =1.
Finding gcd.

ged(x,y) = ged(y,x —y) = ged(y,x (mod y)).
Give recursive Algorithm! Base Case? gcd(x,0) = x.
Extended-gcd(x, y) returns (d, a, b)

d=gcd(x,y) and d = ax+ by
Multiplicative inverse of (x,m).

egcd(x,m) = (1,a,b)
aisinverse! 1 = ax+bm= ax (mod m).

Idea: egcd.

gcd produces 1
by adding and subtracting multiples of x and y

Example: p=7,g=11.

Example: p=7,g=11.
N=77.

Example: p=7,g=11.
N=77.
(p—1)(g—1)=60

Example: p=7,g=11.

N=77.

(p—1)(q—1)=60
Choose e =7, since gcd(7,60) = 1.

Example: p=7,g=11.

N=77.

(p—1)(g—1)=60

Choose e =7, since gcd(7,60) = 1.
egcd(7,60).

Example: p=7,g=11.

N=77.

(p—1)(g—1)=60

Choose e =7, since gcd(7,60) = 1.
egcd(7,60).

7(0)+60(1) = 60

Example: p=7,g=11.

N=77.

(p—1)(g—1)=60

Choose e =7, since gcd(7,60) = 1.
egcd(7,60).

60

Example: p=7,g=11.
N=77.

(p—1)(q—1)=60
Choose e =7, since gcd(7,60) = 1.
egcd(7,60).

7(0)+60(1) = 60
(1)+60(00) = 7
7(-8)+60(1) = 4

Example: p=7,g=11.

N=77.

(p—1)(g—1)=60

Choose e =7, since gcd(7,60) = 1.
egcd(7,60).

Example: p=7,g=11.

N=77.
(p—1)(g—1)=60

Choose e =7, since gcd(7,60) = 1.

egcd(7,60).

- w A~

Example: p=7,g=11.

N=77.
(p—1)(g—1)=60

Choose e =7, since gcd(7,60) = 1.

egcd(7,60).

- w A~

Example: p=7,g=11.
N=77.

(p—1)(q—1)=60
Choose e =7, since gcd(7,60) = 1.
egcd(7,60).

Confirm:

- w A~

Example: p=7,g=11.
N=77.

(p—1)(q—1)=60
Choose e =7, since gcd(7,60) = 1.
egcd(7,60).

Confirm: —119+120=1

- w A~

Example: p=7,g=11.
N=77.

(p—1)(q—1)=60
Choose e =7, since gcd(7,60) = 1.
egcd(7,60).

Confirm: =119+120 = 1

- w A~

Fermat from Bijection.

Fermat’s Little Theorem: For prime p, and a# 0 (mod p),

Fermat from Bijection.

Fermat’s Little Theorem: For prime p, and a# 0 (mod p),
a”~'=1 (mod p).

Fermat from Bijection.
Fermat’s Little Theorem: For prime p, and a# 0 (mod p),
a”~'=1 (mod p).
Proof: Consider T ={a-1 (mod p),...,a-(p—1) (mod p)}.

Fermat from Bijection.

Fermat’s Little Theorem: For prime p, and a# 0 (mod p),
a”~'=1 (mod p).

Proof: Consider T ={a-1 (mod p),...,a-(p—1) (mod p)}.

T is range of function f(x) = ax mod (p) forset S={1,...,p—1}.

Fermat from Bijection.

Fermat’s Little Theorem: For prime p, and a# 0 (mod p),
a”~'=1 (mod p).
Proof: Consider T ={a-1 (mod p),...,a-(p—1) (mod p)}.

T is range of function f(x) = ax mod (p) forset S={1,....,p—1}.
Invertible function:

Fermat from Bijection.

Fermat’s Little Theorem: For prime p, and a# 0 (mod p),
a”~'=1 (mod p).
Proof: Consider T ={a-1 (mod p),...,a-(p—1) (mod p)}.

T is range of function f(x) = ax mod (p) forset S={1,....,p—1}.
Invertible function: one-to-one.

Fermat from Bijection.

Fermat’s Little Theorem: For prime p, and a# 0 (mod p),
a”~'=1 (mod p).
Proof: Consider T ={a-1 (mod p),...,a-(p—1) (mod p)}.

T is range of function f(x) = ax mod (p) forset S={1,....,p—1}.
Invertible function: one-to-one.

Fermat from Bijection.

Fermat’s Little Theorem: For prime p, and a# 0 (mod p),
a”~'=1 (mod p).
Proof: Consider T ={a-1 (mod p),...,a-(p—1) (mod p)}.

T is range of function f(x) = ax mod (p) forset S={1,....,p—1}.
Invertible function: one-to-one.
TCSsince0gT.

Fermat from Bijection.

Fermat’s Little Theorem: For prime p, and a# 0 (mod p),
a”~'=1 (mod p).
Proof: Consider T ={a-1 (mod p),...,a-(p—1) (mod p)}.

T is range of function f(x) = ax mod (p) forset S={1,....,p—1}.
Invertible function: one-to-one.
TCSsince0gT.
p is prime.

Fermat from Bijection.

Fermat’s Little Theorem: For prime p, and a# 0 (mod p),
a”~'=1 (mod p).

Proof: Consider T ={a-1 (mod p),...,a-(p—1) (mod p)}.
T is range of function f(x) = ax mod (p) forset S={1,....,p—1}.

Invertible function: one-to-one.

TCSsince0gT.

p is prime.
= T=S.

Fermat from Bijection.

Fermat’s Little Theorem: For prime p, and a# 0 (mod p),
a”~'=1 (mod p).
Proof: Consider T ={a-1 (mod p),...,a-(p—1) (mod p)}.

T is range of function f(x) = ax mod (p) forset S={1,....,p—1}.
Invertible function: one-to-one.
TCSsince0gT.
p is prime.
— T=S.
Product of elts of T = Product of elts of S.

Fermat from Bijection.

Fermat’s Little Theorem: For prime p, and a# 0 (mod p),
a”~'=1 (mod p).

Proof: Consider T ={a-1 (mod p),...,a-(p—1) (mod p)}.
T is range of function f(x) = ax mod (p) forset S={1,....,p—1}.

Invertible function: one-to-one.

TCSsince0gT.

p is prime.
= T=S.

Product of elts of T = Product of elts of S.

(a:1):(a-2)-++(a-(p—1)) =1-2:+:(p—1) modp,

Fermat from Bijection.

Fermat’s Little Theorem: For prime p, and a# 0 (mod p),
a”~'=1 (mod p).
Proof: Consider T ={a-1 (mod p),...,a-(p—1) (mod p)}.

T is range of function f(x) = ax mod (p) forset S={1,....,p—1}.
Invertible function: one-to-one.
TCSsince0gT.
p is prime.
— T=S.
Product of elts of T = Product of elts of S.

(a-1)-(a-2)---(a-(p—1))=1-2---(p—1) mod p,
Since multiplication is commutative.

Fermat from Bijection.

Fermat’s Little Theorem: For prime p, and a# 0 (mod p),
a”~'=1 (mod p).
Proof: Consider T ={a-1 (mod p),...,a-(p—1) (mod p)}.

T is range of function f(x) = ax mod (p) forset S={1,....,p—1}.
Invertible function: one-to-one.
TCSsince0gT.
p is prime.
— T=S.
Product of elts of T = Product of elts of S.

(a-1)-(a-2)---(a-(p~ 1) =1-2--(p—1) modp,
Since multiplication is commutative.
aP (1 (p=1)=(1--(p~1)) modp.

Fermat from Bijection.

Fermat’s Little Theorem: For prime p, and a# 0 (mod p),
a”~'=1 (mod p).
Proof: Consider T ={a-1 (mod p),...,a-(p—1) (mod p)}.

T is range of function f(x) = ax mod (p) forset S={1,....,p—1}.
Invertible function: one-to-one.
TCSsince0gT.
p is prime.
— T=S.
Product of elts of T = Product of elts of S.
(a-1)-(a-2)---(a-(p~ 1) =1-2--(p—1) modp,

Since multiplication is commutative.

aP (1 (p=1)=(1--(p~1)) modp.
Each of 2,...(p—1) has an inverse modulo p,

Fermat from Bijection.

Fermat’s Little Theorem: For prime p, and a# 0 (mod p),
a”~'=1 (mod p).
Proof: Consider T ={a-1 (mod p),...,a-(p—1) (mod p)}.
T is range of function f(x) = ax mod (p) forset S={1,...,p—1}.
Invertible function: one-to-one.
TCSsince0gT.
p is prime.
= T=S.
Product of elts of T = Product of elts of S.
(a-1)-(a-2)(a-(p—1))=1-2--(p—1) modp,
Since multiplication is commutative.
aP (1 (p=1))=(1-(p—1)) modp,
Each of 2,...(p—1) has an inverse modulo p,
mulitply by inverses to get...

Fermat from Bijection.

Fermat’s Little Theorem: For prime p, and a# 0 (mod p),
a”~'=1 (mod p).
Proof: Consider T ={a-1 (mod p),...,a-(p—1) (mod p)}.

T is range of function f(x) = ax mod (p) forset S={1,....,p—1}.
Invertible function: one-to-one.
TCSsince0gT.
p is prime.
— T=S.
Product of elts of T = Product of elts of S.
(a-1)-(a-2)---(a-(p~ 1) =1-2--(p—1) modp,

Since multiplication is commutative.
aP (1 (p=1)=(1--(p~1)) modp.

Each of 2,...(p—1) has an inverse modulo p,
mulitply by inverses to get...

aP-"=1 modp.

Fermat from Bijection.

Fermat’s Little Theorem: For prime p, and a# 0 (mod p),
a”~'=1 (mod p).
Proof: Consider T ={a-1 (mod p),...,a-(p—1) (mod p)}.

T is range of function f(x) = ax mod (p) forset S={1,....,p—1}.
Invertible function: one-to-one.
TCSsince0gT.
p is prime.
— T=S.
Product of elts of T = Product of elts of S.
(a-1)-(a-2)---(a-(p~ 1) =1-2--(p—1) modp,

Since multiplication is commutative.
aP (1 (p=1)=(1--(p~1)) modp.

Each of 2,...(p—1) has an inverse modulo p,
mulitply by inverses to get...

aP~ =1 modp.

RSA

RSA:

RSA

RSA:
N=p.q

RSA

RSA:

N=p,q
e with gcd(e,(p—1)(g—1)) = 1.

RSA

RSA:
N:p7q
e with gcd(e,(p—1)(g—1)) =
d=e' (mod (p—1)(g—1)).

Theorem: x°@ = x (mod N)

1.

RSA

RSA:
N=p,q
e with gcd(e,(p—1)(g— 1)) =1.
d=e"' (mod (p—1)(g—1)).

Theorem: x°@ = x (mod N)
Proof:

RSA

RSA:
N:p7q
e with gcd(e,(p—1)(g—1)) =
d=e' (mod (p—1)(g—1)).

Theorem: x°@ = x (mod N)

1.

Proof:
x4 — x is divisible by p and g = theorem!

RSA

RSA:
N=p,q
e with gcd(e,(p—1)(g— 1)) =1.
d=e"' (mod (p—1)(g—1)).

Theorem: x°@ = x (mod N)

Proof:
x4 — x is divisible by p and g = theorem!

x9 — x

RSA

RSA:
N=p,q
e with gcd(e,(p—1)(g— 1)) =1.
d=e"' (mod (p—1)(g—1)).

Theorem: x°@ = x (mod N)

Proof:
x4 — x is divisible by p and g = theorem!

x8d _ x — xk(p=1)(g=1)+1 _

RSA

RSA:
N=p.q
e with gcd(e,(p—1)(g— 1)) =1.
d=e' (mod (p—1)(g—1)).
Theorem: x°@ = x (mod N)
Proof:
x4 — x is divisible by p and g = theorem!

X6 _ x — xk(-1)@-DH1 _y — x((xka-D)p-1_1)

RSA

RSA:
N=p,q
e with gcd(e,(p—1)(g— 1)) =1.
d=e"' (mod (p—1)(g—1)).

Theorem: x°@ = x (mod N)

Proof:
x4 — x is divisible by p and g = theorem!

X6 _ x — xk(-1)@-DH1 _y — x((xka-D)p-1_1)

If x is divisible by p, the product is.

RSA

RSA:
N=p,q
e with gcd(e,(p—1)(g— 1)) =1.
d=e' (mod (p—1)(g—1)).
Theorem: x°@ = x (mod N)
Proof:
x4 — x is divisible by p and g = theorem!
X80 x = xk(P=1@-1)+1 _x — y((xkK(@-D)p=1 _ 1)
If x is divisible by p, the product is.
Otherwise (x¥(3-1)P~1 =1 (mod p) by Fermat.

RSA

RSA:
N=p.q
e with gcd(e,(p—1)(g— 1)) =1.
d=e' (mod (p—1)(g—1)).
Theorem: x°@ = x (mod N)
Proof:
x4 — x is divisible by p and g = theorem!

x69 — x = xKP=1(a-D+1 _ x — x((xk(a-1)p-1_1)
If x is divisible by p, the product is.

Otherwise (x¥(3-1)P~1 =1 (mod p) by Fermat.
— (xK(@-1)p-1_1 divisible by p.

RSA

RSA:
N=p,q
e with gcd(e,(p—1)(g— 1)) =1.
d=e' (mod (p—1)(g—1)).
Theorem: x°¢ = x (mod N)
Proof:
x¢9 — x is divisible by p and g = theorem!
X80 x = xk(P=1@-1)+1 _x — y((xkK(@-D)p=1 _ 1)
If x is divisible by p, the product is.
Otherwise (x¥(3-1)P~1 =1 (mod p) by Fermat.
— (xk(@-1))P-1 _1 divisible by p.

Similarly for q.

RSA

RSA:
N=p,q
e with gcd(e,(p—1)(g— 1)) =1.
d=e' (mod (p—1)(g—1)).
Theorem: x°¢ = x (mod N)
Proof:
x¢9 — x is divisible by p and g = theorem!
X80 x = xk(P=1@-1)+1 _x — y((xkK(@-D)p=1 _ 1)
If x is divisible by p, the product is.
Otherwise (x¥(3-1)P~1 =1 (mod p) by Fermat.
— (xk(@-1))P-1 _1 divisible by p.

Similarly for q.

RSA, Public Key, and Signatures.

RSA, Public Key, and Signatures.

RSA:

RSA, Public Key, and Signatures.

RSA:
N=p.,q

RSA, Public Key, and Signatures.

RSA:
N = p,q
e with gcd(e,(p—1)(g—1)).

RSA, Public Key, and Signatures.

RSA:
N=p,q
e with gcd(e,(p—1)(g—1)).
d=e" (mod (p—1)(g—1)).

RSA, Public Key, and Signatures.

RSA:
N=p,q
e with gcd(e,(p—1)(g—1)).
d=e" (mod (p—1)(g—1)).

Public Key Cryptography:

RSA, Public Key, and Signatures.

RSA:
N=p,q
e with gcd(e,(p—1)(g—1)).
d=e" (mod (p—1)(g—1)).
Public Key Cryptography:

D(E(m,K),k) = (m®)? mod N = m.

RSA, Public Key, and Signatures.

RSA:
N=p,q
e with gcd(e,(p—1)(g—1)).
d=e" (mod (p—1)(g—1)).

Public Key Cryptography:
D(E(m,K),k) = (m®)? mod N = m.

Signature scheme:

RSA, Public Key, and Signatures.

RSA:
N=p,q
e with gcd(e,(p—1)(g—1)).
d=e" (mod (p—1)(g—1)).

Public Key Cryptography:
D(E(m,K),k) = (m®)? mod N = m.

Signature scheme:
S(C)=D(C).

RSA, Public Key, and Signatures.

RSA:
N=p,q
e with gcd(e,(p—1)(g—1)).
d=e"' (mod (p—1)(g—1)).
Public Key Cryptography:

D(E(m,K),k) = (m®)? mod N = m.

Signature scheme:

S(C)=D(C).
Announce (C, S(C))

RSA, Public Key, and Signatures.

RSA:
N=p,q
e with gcd(e,(p—1)(g—1)).
d=e"' (mod (p—1)(g—1)).
Public Key Cryptography:

D(E(m,K),k) = (m®)? mod N = m.

Signature scheme:

S(C)=D(C).
Announce (C, S(C))

RSA, Public Key, and Signatures.

RSA:
N=p,q
e with gcd(e,(p—1)(g—1)).
d=e"' (mod (p—1)(g—1)).

Public Key Cryptography:
D(E(m,K),k) = (m®)? mod N = m.

Signature scheme:

S(C)=D(C).
Announce (C, S(C))

Verify: Check C = E(C).

RSA, Public Key, and Signatures.

RSA:
N=p,q
e with gcd(e,(p—1)(g—1)).
d=e"' (mod (p—1)(g—1)).

Public Key Cryptography:
D(E(m,K),k) = (m®)? mod N = m.

Signature scheme:

S(C)=D(C).
Announce (C, S(C))

Verify: Check C = E(C).
E(D(C,k),K) = (C%)®=C (mod N)

Polynomials

Property 1: Any degree d polynomial over a field has at most d roots.

Polynomials

Property 1: Any degree d polynomial over a field has at most d roots.
Proof Idea:

Polynomials

Property 1: Any degree d polynomial over a field has at most d roots.
Proof Idea:

Polynomials

Property 1: Any degree d polynomial over a field has at most d roots.

Proof Idea:
Any polynomial with roots ry, ..., rx.

Polynomials

Property 1: Any degree d polynomial over a field has at most d roots.

Proof Idea:
Any polynomial with roots ry, ..., rx.
written as (x —ry) - (x — r) Q(x).

Polynomials

Property 1: Any degree d polynomial over a field has at most d roots.

Proof Idea:
Any polynomial with roots ry, ..., rx.
written as (x —ry) - (x — r) Q(x).
using polynomial division.
Degree at least the number of roots.

Polynomials

Property 1: Any degree d polynomial over a field has at most d roots.

Proof Idea:
Any polynomial with roots ry, ..., rx.
written as (x —ry) - (x — r) Q(x).
using polynomial division.
Degree at least the number of roots. O

Polynomials

Property 1: Any degree d polynomial over a field has at most d roots.

Proof Idea:
Any polynomial with roots ry, ..., rx.
written as (x —ry) - (x — r) Q(x).
using polynomial division.
Degree at least the number of roots. O

Property 2: There is exactly 1 polynomial of degree < d with
arithmetic modulo prime p that contains any d + 1:
(X1,%1), -+ (Xdg1, Ya41) with x; distinct.

Polynomials

Property 1: Any degree d polynomial over a field has at most d roots.

Proof Idea:
Any polynomial with roots ry, ..., rx.
written as (x —ry) - (x — r) Q(x).
using polynomial division.
Degree at least the number of roots. O

Property 2: There is exactly 1 polynomial of degree < d with
arithmetic modulo prime p that contains any d + 1:
(X1,%1), -+ (Xdg1, Ya41) with x; distinct.

Proof Ideas:

Polynomials

Property 1: Any degree d polynomial over a field has at most d roots.

Proof Idea:
Any polynomial with roots ry, ..., rx.
written as (x —ry) - (x — r) Q(x).
using polynomial division.
Degree at least the number of roots. O

Property 2: There is exactly 1 polynomial of degree < d with
arithmetic modulo prime p that contains any d + 1:
(X1,%1), -+ (Xdg1, Ya41) with x; distinct.

Proof Ideas:

Polynomials

Property 1: Any degree d polynomial over a field has at most d roots.

Proof Idea:
Any polynomial with roots ry, ..., rx.
written as (x —ry) - (x — r) Q(x).
using polynomial division.
Degree at least the number of roots. O

Property 2: There is exactly 1 polynomial of degree < d with
arithmetic modulo prime p that contains any d + 1:
(X1,%1), -+ (Xdg1, Ya41) with x; distinct.

Proof Ideas:
Lagrange Interpolation gives existence.

Polynomials

Property 1: Any degree d polynomial over a field has at most d roots.

Proof Idea:
Any polynomial with roots ry, ..., rx.
written as (x —ry) - (x — r) Q(x).
using polynomial division.
Degree at least the number of roots. O

Property 2: There is exactly 1 polynomial of degree < d with
arithmetic modulo prime p that contains any d + 1:
(X1,%1), -+ (Xdg1, Ya41) with x; distinct.

Proof Ideas:
Lagrange Interpolation gives existence.
Property 1 gives uniqueness.

Polynomials

Property 1: Any degree d polynomial over a field has at most d roots.

Proof Idea:
Any polynomial with roots ry, ..., rx.
written as (x —ry) - (x — r) Q(x).
using polynomial division.
Degree at least the number of roots. O

Property 2: There is exactly 1 polynomial of degree < d with
arithmetic modulo prime p that contains any d + 1:
(X1,%1), -+ (Xdg1, Ya41) with x; distinct.

Proof Ideas:
Lagrange Interpolation gives existence.
Property 1 gives uniqueness. O

Polynomials

Property 1: Any degree d polynomial over a field has at most d roots.

Proof Idea:
Any polynomial with roots ry, ..., rx.
written as (x —ry) - (x — r) Q(x).
using polynomial division.
Degree at least the number of roots. O

Property 2: There is exactly 1 polynomial of degree < d with
arithmetic modulo prime p that contains any d + 1:
(X1,%1), -+ (Xdg1, Ya41) with x; distinct.

Proof Ideas:
Lagrange Interpolation gives existence.
Property 1 gives uniqueness. O

Applications.

Property 2: There is exactly 1 polynomial of degree < d with
arithmetic modulo prime p that contains any d + 1 points:
(X1, ¥1)s -+ (Xg11, Yay1) With x; distinct.

Applications.

Property 2: There is exactly 1 polynomial of degree < d with
arithmetic modulo prime p that contains any d + 1 points:
(X1, ¥1)s -+ (Xg11, Yay1) With x; distinct.

Secret Sharing: k out of n people know secret.

Applications.
Property 2: There is exactly 1 polynomial of degree < d with
arithmetic modulo prime p that contains any d + 1 points:
(X1, ¥1)s -+ (Xg11, Yay1) With x; distinct.

Secret Sharing: k out of n people know secret.
Scheme: degree n— 1 polynomial, P(x).

Applications.

Property 2: There is exactly 1 polynomial of degree < d with
arithmetic modulo prime p that contains any d + 1 points:

(X1, 1)+, (Xg41, Ya41) with x; distinct.

Secret Sharing: k out of n people know secret.
Scheme: degree n— 1 polynomial, P(x).
Secret: P(0) Shares: (1,P(1)),...(n,P(n)).

Applications.

Property 2: There is exactly 1 polynomial of degree < d with
arithmetic modulo prime p that contains any d + 1 points:
(X1 W)7 cee (Xd+1 s Yd+1) with x; distinct.
Secret Sharing: k out of n people know secret.
Scheme: degree n— 1 polynomial, P(x).
Secret: P(0) Shares: (1,P(1)),...(n,P(n)).
Recover Secret: Reconstruct P(x) with any k points.

Applications.

Property 2: There is exactly 1 polynomial of degree < d with
arithmetic modulo prime p that contains any d + 1 points:
(X1 W)7 cee (Xd+1 s Yd+1) with x; distinct.
Secret Sharing: k out of n people know secret.
Scheme: degree n— 1 polynomial, P(x).
Secret: P(0) Shares: (1,P(1)),...(n,P(n)).
Recover Secret: Reconstruct P(x) with any k points.

Erasure Coding: n packets, k losses.

Applications.

Property 2: There is exactly 1 polynomial of degree < d with
arithmetic modulo prime p that contains any d + 1 points:
(X1, ¥1)s -+ (Xg11, Yay1) With x; distinct.

Secret Sharing: k out of n people know secret.
Scheme: degree n— 1 polynomial, P(x).
Secret: P(0) Shares: (1,P(1)),...(n,P(n)).
Recover Secret: Reconstruct P(x) with any k points.

Erasure Coding: n packets, k losses.
Scheme: degree n— 1 polynomial, P(x). Reed-Solomon.

Applications.

Property 2: There is exactly 1 polynomial of degree < d with
arithmetic modulo prime p that contains any d + 1 points:
(X1, ¥1)s -+ (Xg11, Yay1) With x; distinct.

Secret Sharing: k out of n people know secret.
Scheme: degree n— 1 polynomial, P(x).
Secret: P(0) Shares: (1,P(1)),...(n,P(n)).
Recover Secret: Reconstruct P(x) with any k points.
Erasure Coding: n packets, k losses.

Scheme: degree n— 1 polynomial, P(x). Reed-Solomon.
Message: P(0) = mg,P(1)=my,...P(n—1) =mp_4

Applications.

Property 2: There is exactly 1 polynomial of degree < d with
arithmetic modulo prime p that contains any d + 1 points:
(X1, ¥1)s -+ (Xg11, Yay1) With x; distinct.

Secret Sharing: k out of n people know secret.
Scheme: degree n— 1 polynomial, P(x).
Secret: P(0) Shares: (1,P(1)),...(n,P(n)).
Recover Secret: Reconstruct P(x) with any k points.

Erasure Coding: n packets, k losses.
Scheme: degree n— 1 polynomial, P(x). Reed-Solomon.
Message: P(0) = mg,P(1)=my,...P(n—1) =mp_4
Send: (0,P(0)),...(n+k—1,P(n+k—1)).

Applications.

Property 2: There is exactly 1 polynomial of degree < d with
arithmetic modulo prime p that contains any d + 1 points:

(X1, ¥1)s -+ (Xg11, Yay1) With x; distinct.

Secret Sharing: k out of n people know secret.
Scheme: degree n— 1 polynomial, P(x).
Secret: P(0) Shares: (1,P(1)),...(n,P(n)).
Recover Secret: Reconstruct P(x) with any k points.

Erasure Coding: n packets, k losses.
Scheme: degree n— 1 polynomial, P(x). Reed-Solomon.
Message: P(0) = mg,P(1)=my,...P(n—1) =mp_4
Send: (0,P(0)),...(n+k—1,P(n+k—1)).

Recover Message: Any n packets are cool by property 2.

Applications.

Property 2: There is exactly 1 polynomial of degree < d with
arithmetic modulo prime p that contains any d + 1 points:

(X1, ¥1)s -+ (Xg11, Yay1) With x; distinct.

Secret Sharing: k out of n people know secret.
Scheme: degree n— 1 polynomial, P(x).
Secret: P(0) Shares: (1,P(1)),...(n,P(n)).
Recover Secret: Reconstruct P(x) with any k points.
Erasure Coding: n packets, k losses.
Scheme: degree n— 1 polynomial, P(x). Reed-Solomon.
Message: P(0) = mg,P(1)=my,...P(n—1) =mp_4
Send: (0,P(0)),...(n+k—1,P(n+k—1)).
Recover Message: Any n packets are cool by property 2.

Corruptions Coding: n packets, k corruptions.

Applications.

Property 2: There is exactly 1 polynomial of degree < d with
arithmetic modulo prime p that contains any d + 1 points:
(X1, ¥1)s -+ (Xg11, Yay1) With x; distinct.

Secret Sharing: k out of n people know secret.
Scheme: degree n— 1 polynomial, P(x).
Secret: P(0) Shares: (1,P(1)),...(n,P(n)).
Recover Secret: Reconstruct P(x) with any k points.

Erasure Coding: n packets, k losses.
Scheme: degree n— 1 polynomial, P(x). Reed-Solomon.
Message: P(0) = mg,P(1)=my,...P(n—1) =mp_4
Send: (0,P(0)),...(n+k—1,P(n+k—1)).

Recover Message: Any n packets are cool by property 2.

Corruptions Coding: n packets, k corruptions.
Scheme: degree n— 1 polynomial, P(x). Reed-Solomon.

Applications.

Property 2: There is exactly 1 polynomial of degree < d with
arithmetic modulo prime p that contains any d + 1 points:
(X1, ¥1)s -+ (Xg11, Yay1) With x; distinct.

Secret Sharing: k out of n people know secret.
Scheme: degree n— 1 polynomial, P(x).
Secret: P(0) Shares: (1,P(1)),...(n,P(n)).
Recover Secret: Reconstruct P(x) with any k points.

Erasure Coding: n packets, k losses.
Scheme: degree n— 1 polynomial, P(x). Reed-Solomon.
Message: P(0) = mg,P(1)=my,...P(n—1) =mp_4
Send: (0,P(0)),...(n+k—1,P(n+k—1)).

Recover Message: Any n packets are cool by property 2.

Corruptions Coding: n packets, k corruptions.

Scheme: degree n— 1 polynomial, P(x). Reed-Solomon.
Message: P(0) = mg,P(1)=my,...P(n—1) =mp_4

Applications.

Property 2: There is exactly 1 polynomial of degree < d with
arithmetic modulo prime p that contains any d + 1 points:

(X1, ¥1)s -+ (Xg11, Yay1) With x; distinct.

Secret Sharing: k out of n people know secret.
Scheme: degree n— 1 polynomial, P(x).
Secret: P(0) Shares: (1,P(1)),...(n,P(n)).
Recover Secret: Reconstruct P(x) with any k points.

Erasure Coding: n packets, k losses.
Scheme: degree n— 1 polynomial, P(x). Reed-Solomon.
Message: P(0) = mg,P(1)=my,...P(n—1) =mp_4
Send: (0,P(0)),...(n+k—1,P(n+k—1)).

Recover Message: Any n packets are cool by property 2.

Corruptions Coding: n packets, k corruptions.
Scheme: degree n— 1 polynomial, P(x). Reed-Solomon.
Message: P(0) = mg,P(1)=my,...P(n—1) =mp_4
Send: (0, P(0)),...(n+2k—1,P(n+2k—1)).

Applications.

Property 2: There is exactly 1 polynomial of degree < d with
arithmetic modulo prime p that contains any d + 1 points:
(X1, ¥1)s -+ (Xg11, Yay1) With x; distinct.

Secret Sharing: k out of n people know secret.
Scheme: degree n— 1 polynomial, P(x).
Secret: P(0) Shares: (1,P(1)),...(n,P(n)).
Recover Secret: Reconstruct P(x) with any k points.

Erasure Coding: n packets, k losses.
Scheme: degree n— 1 polynomial, P(x). Reed-Solomon.
Message: P(0) = mg,P(1)=my,...P(n—1) =mp_4
Send: (0,P(0)),...(n+k—1,P(n+k—1)).

Recover Message: Any n packets are cool by property 2.

Corruptions Coding: n packets, k corruptions.
Scheme: degree n— 1 polynomial, P(x). Reed-Solomon.
Message: P(0) = mg,P(1)=my,...P(n—1) =mp_4
Send: (0, P(0)),...(n+2k—1,P(n+2k—1)).

Recovery:

Applications.

Property 2: There is exactly 1 polynomial of degree < d with
arithmetic modulo prime p that contains any d + 1 points:
(X1, ¥1)s -+ (Xg11, Yay1) With x; distinct.

Secret Sharing: k out of n people know secret.
Scheme: degree n— 1 polynomial, P(x).
Secret: P(0) Shares: (1,P(1)),...(n,P(n)).
Recover Secret: Reconstruct P(x) with any k points.

Erasure Coding: n packets, k losses.
Scheme: degree n— 1 polynomial, P(x). Reed-Solomon.
Message: P(0) = mg,P(1)=my,...P(n—1) =mp_4
Send: (0,P(0)),...(n+k—1,P(n+k—1)).

Recover Message: Any n packets are cool by property 2.

Corruptions Coding: n packets, k corruptions.
Scheme: degree n— 1 polynomial, P(x). Reed-Solomon.
Message: P(0) = mg,P(1)=my,...P(n—1) =mp_4
Send: (0, P(0)),...(n+2k—1,P(n+2k—1)).

Recovery: P(x) is only consistent polynomial with n+ k points.

Applications.

Property 2: There is exactly 1 polynomial of degree < d with
arithmetic modulo prime p that contains any d + 1 points:
(X1, ¥1)s -+ (Xg11, Yay1) With x; distinct.

Secret Sharing: k out of n people know secret.
Scheme: degree n— 1 polynomial, P(x).
Secret: P(0) Shares: (1,P(1)),...(n,P(n)).
Recover Secret: Reconstruct P(x) with any k points.

Erasure Coding: n packets, k losses.
Scheme: degree n— 1 polynomial, P(x). Reed-Solomon.
Message: P(0) = mg,P(1)=my,...P(n—1) =mp_4
Send: (0,P(0)),...(n+k—1,P(n+k—1)).

Recover Message: Any n packets are cool by property 2.

Corruptions Coding: n packets, k corruptions.
Scheme: degree n— 1 polynomial, P(x). Reed-Solomon.
Message: P(0) = mg,P(1)=my,...P(n—1) =mp_4
Send: (0, P(0)),...(n+2k—1,P(n+2k—1)).
Recovery: P(x) is only consistent polynomial with n+ k points.
Property 2 and pigeonhole principle.

Welsh-Berlekamp

Idea: Error locator polynomial of degree k with zeros at errors.

Welsh-Berlekamp

Idea: Error locator polynomial of degree k with zeros at errors.

Welsh-Berlekamp
Idea: Error locator polynomial of degree k with zeros at errors.
For all points i =1,...,i,n+2k, P(I)E(i) = R(/)E(i) (mod p)

Welsh-Berlekamp
Idea: Error locator polynomial of degree k with zeros at errors.

For all points i =1,...,i,n+2k, P(I)E(i) = R(/)E(i) (mod p)
since E(i) = 0 at points where there are errors.

Welsh-Berlekamp
Idea: Error locator polynomial of degree k with zeros at errors.
For all points i =1,...,i,n+2k, P(I)E(i) = R(/)E(i) (mod p)

since E(i) = 0 at points where there are errors.
Let Q(x) = P(x)E(x).

Welsh-Berlekamp
Idea: Error locator polynomial of degree k with zeros at errors.

For all points i =1,...,i,n+2k, P(I)E(i) = R(/)E(i) (mod p)
since E(i) = 0 at points where there are errors.
Let Q(x) = P(x)E(x).

Q(x) = anik—1 xRt ao-

Welsh-Berlekamp
Idea: Error locator polynomial of degree k with zeros at errors.
For all points i =1,...,i,n+2k, P(I)E(i) = R(/)E(i) (mod p)

since E(i) = 0 at points where there are errors.
Let Q(x) = P(x)E(x).

Q(x) = an+k_1x”+k‘1 +---ap.
E(x)= Xk+bk_1Xk_1 +---bp.

Welsh-Berlekamp
Idea: Error locator polynomial of degree k with zeros at errors.
For all points i =1,...,i,n+2k, P(I)E(i) = R(/)E(i) (mod p)

since E(i) = 0 at points where there are errors.
Let Q(x) = P(x)E(x).

Q(x) = an+k_1x”+k‘1 +---ap.
E(x)= Xk+bk_1Xk_1 +---bp.

Welsh-Berlekamp
Idea: Error locator polynomial of degree k with zeros at errors.

For all points i =1,...,i,n+2k, P(i)E(i) = R(/)E(i) (mod p)
since E(i) = 0 at points where there are errors.

Let Q(x) = P(x)E(x).
Q(x) = anik—1 xRt ao-
E(x)= Xk+bk_1Xk_1 +---bp.

Gives system of n+ 2k linear equations.

Welsh-Berlekamp
Idea: Error locator polynomial of degree k with zeros at errors.

For all points i =1,...,i,n+2k, P(I)E(i) = R(/)E(i) (mod p)
since E(i) = 0 at points where there are errors.
Let Q(x) = P(x)E(x).
Q(x) = anik—1 xRt ao-
E(x)= Xk+bk_1Xk_1 +---bp.
Gives system of n+ 2k linear equations.
anik1+...a = R()(1+bk_1---bg) (mod p)

Welsh-Berlekamp
Idea: Error locator polynomial of degree k with zeros at errors.

For all points i =1,...,i,n+2k, P(I)E(i) = R(/)E(i) (mod p)
since E(i) = 0 at points where there are errors.
Let Q(x) = P(x)E(x).
Q(x) = anik—1 xRt ao-
E(x)= Xk+bk_1Xk_1 +---bp.
Gives system of n+ 2k linear equations.
anik1+...a = R()(1+bk_1---bg) (mod p)

anik-1(2)" ey = R2)((2)+ bi-1(2)7T - b) (mod p)

Welsh-Berlekamp
Idea: Error locator polynomial of degree k with zeros at errors.

For all points i =1,...,i,n+2k, P(I)E(i) = R(/)E(i) (mod p)
since E(i) = 0 at points where there are errors.
Let Q(x) = P(x)E(x).
Q(x) = anik—1 xRt ao-
E(x)= Xk+bk_1Xk_1 +---bp.
Gives system of n+ 2k linear equations.
anik1+...a = R()(1+bk_1---bg) (mod p)

anik-1(2)" ey = R2)((2)+ bi-1(2)7T - b) (mod p)

anik-1 (M) 4 R(m)((m) + by—4(m)*"---bo) (mod p)

Welsh-Berlekamp
Idea: Error locator polynomial of degree k with zeros at errors.
For all points i =1,...,i,n+2k, P(I)E(i) = R(/)E(i) (mod p)

since E(i) = 0 at points where there are errors.
Let Q(x) = P(x)E(x).

Q(x) = anik—1 xRt ao-
E(x)= Xk+bk_1Xk_1 +---bp.
Gives system of n+ 2k linear equations.
anik1+-...a = R(1)(1+bk_1---by) (mod p)

anik-1(2)" ey = R2)((2)+ bi-1(2)7T - b) (mod p)

anik-1 (M) 4 = R(m)((m) + by—4(m)*"---bo) (mod p)

..and n+ 2k unknown coefficients of Q(x) and E(x)!

Welsh-Berlekamp
Idea: Error locator polynomial of degree k with zeros at errors.

For all points i =1,...,i,n+2k, P(I)E(i) = R(/)E(i) (mod p)
since E(i) = 0 at points where there are errors.
Let Q(x) = P(x)E(x).

Q(x) = anik—1 xRt ao-
E(x)= Xk+bk_1Xk_1 +---bp.
Gives system of n+ 2k linear equations.
anik1+-...a = R(1)(1+bk_1---by) (mod p)

anik-1(2)" ey = R2)((2)+ bi-1(2)7T - b) (mod p)

anik-1 (M) 4 = R(m)((m) + by—4(m)*"---bo) (mod p)

..and n+ 2k unknown coefficients of Q(x) and E(x)!
Solve for coefficients of Q(x) and E(x).

Welsh-Berlekamp
Idea: Error locator polynomial of degree k with zeros at errors.

For all points i =1,...,i,n+2k, P(I)E(i) = R(/)E(i) (mod p)
since E(i) = 0 at points where there are errors.
Let Q(x) = P(x)E(x).

Q(x) = anik—1 xRt ao-
E(x)= Xk+bk_1Xk_1 +---bp.
Gives system of n+ 2k linear equations.
anik1+-...a = R(1)(1+bk_1---by) (mod p)

anik-1(2)" ey = R2)((2)+ bi-1(2)7T - b) (mod p)

anik-1 (M) 4 = R(m)((m) + by—4(m)*"---bo) (mod p)

..and n+ 2k unknown coefficients of Q(x) and E(x)!
Solve for coefficients of Q(x) and E(x).

Find P(x) = Q(x)/E(x).

Welsh-Berlekamp
Idea: Error locator polynomial of degree k with zeros at errors.

For all points i =1,...,i,n+2k, P(I)E(i) = R(/)E(i) (mod p)
since E(i) = 0 at points where there are errors.
Let Q(x) = P(x)E(x).

Q(x) = anik—1 xRt ao-
E(x)= Xk+bk_1Xk_1 +---bp.
Gives system of n+ 2k linear equations.
anik1+-...a = R(1)(1+bk_1---by) (mod p)

anik-1(2)" ey = R2)((2)+ bi-1(2)7T - b) (mod p)

anik-1 (M) 4 = R(m)((m) + by—4(m)*"---bo) (mod p)

..and n+ 2k unknown coefficients of Q(x) and E(x)!
Solve for coefficients of Q(x) and E(x).

Find P(x) = Q(x)/E(x).

Welsh-Berlekamp
Idea: Error locator polynomial of degree k with zeros at errors.

For all points i =1,...,i,n+2k, P(I)E(i) = R(/)E(i) (mod p)
since E(i) = 0 at points where there are errors.
Let Q(x) = P(x)E(x).

Q(x) = anik—1 xRt ao-
E(x)= Xk+bk_1Xk_1 +---bp.
Gives system of n+ 2k linear equations.
anik1+-...a = R(1)(1+bk_1---by) (mod p)

anik-1(2)" ey = R2)((2)+ bi-1(2)7T - b) (mod p)

anik-1 (M) 4 = R(m)((m) + by—4(m)*"---bo) (mod p)

..and n+ 2k unknown coefficients of Q(x) and E(x)!
Solve for coefficients of Q(x) and E(x).

Welsh-Berlekamp
Idea: Error locator polynomial of degree k with zeros at errors.

For all points i =1,...,i,n+2k, P(I)E(i) = R(/)E(i) (mod p)
since E(i) = 0 at points where there are errors.
Let Q(x) = P(x)E(x).

Q(x) = anik—1 xRt ao-
E(x)= Xk+bk_1Xk_1 +---bp.
Gives system of n+ 2k linear equations.
anik1+-...a = R(1)(1+bk_1---by) (mod p)

anik-1(2)" ey = R2)((2)+ bi-1(2)7T - b) (mod p)

anik-1 (M) 4 = R(m)((m) + by—4(m)*"---bo) (mod p)

..and n+ 2k unknown coefficients of Q(x) and E(x)!
Solve for coefficients of Q(x) and E(x).

Find P(x) = Q(x)/E(x).

Counting

First Rule

Counting

First Rule
Second Rule

Counting

First Rule
Second Rule
Stars/Bars

Counting

First Rule

Second Rule

Stars/Bars

Common Scenarios: Sampling, Balls in Bins.

Counting

First Rule

Second Rule

Stars/Bars

Common Scenarios: Sampling, Balls in Bins.
Sum Rule. Inclusion/Exclusion.

Counting

First Rule

Second Rule

Stars/Bars

Common Scenarios: Sampling, Balls in Bins.
Sum Rule. Inclusion/Exclusion.
Combinatorial Proofs.

Counting

First Rule

Second Rule

Stars/Bars

Common Scenarios: Sampling, Balls in Bins.
Sum Rule. Inclusion/Exclusion.
Combinatorial Proofs.

Example: visualize.

First rule: ny x no--- x n3. Product Rule.
Second rule: when order doesn’t matter divide..when possible.

A

Example: visualize.

First rule: ny x no--- x n3. Product Rule.
Second rule: when order doesn’t matter divide..when possible.

A

3 card Poker deals: 52

Example: visualize.

First rule: ny x no--- x n3. Product Rule.
Second rule: when order doesn’t matter divide..when possible.

A

3 card Poker deals: 52 x 51

Example: visualize.

First rule: ny x no--- x n3. Product Rule.
Second rule: when order doesn’t matter divide..when possible.

A

3 card Poker deals: 52 x 51 x 50

Example: visualize.

First rule: ny x no--- x n3. Product Rule.
Second rule: when order doesn’t matter divide..when possible.

A

3 card Poker deals: 52 x 51 x 50 = 22

Example: visualize.

First rule: ny x no--- x n3. Product Rule.
Second rule: when order doesn’t matter divide..when possible.

A

3 card Poker deals: 52 x 51 x 50 = 221. First rule.

Example: visualize.

First rule: ny x no--- x n3. Product Rule.
Second rule: when order doesn’t matter divide..when possible.

A

3 card Poker deals: 52 x 51 x 50 = 221. First rule.
Poker hands: A?

Example: visualize.

First rule: ny x no--- x n3. Product Rule.
Second rule: when order doesn’t matter divide..when possible.

A

3 card Poker deals: 52 x 51 x 50 = 221. First rule.
Poker hands: A?
Hand: Q, K, A.

Example: visualize.

First rule: ny x no--- x n3. Product Rule.
Second rule: when order doesn’t matter divide..when possible.

A

3 card Poker deals: 52 x 51 x 50 = 221. First rule.
Poker hands: A?

Hand: Q, K, A.

Deals: Q,K,A,

Example: visualize.

First rule: ny x no--- x n3. Product Rule.
Second rule: when order doesn’t matter divide..when possible.

A

3 card Poker deals: 52 x 51 x 50 = 221. First rule.
Poker hands: A?

Hand: Q, K, A.

Deals: Q,K,A, QA K,

Example: visualize.

First rule: ny x no--- x n3. Product Rule.
Second rule: when order doesn’t matter divide..when possible.

A

3 card Poker deals: 52 x 51 x 50 = 221. First rule.
Poker hands: A?
Hand: Q, K, A.
Deals: Q, K, A, Q A K, K,A QK A Q, AK,Q, A QK.

Example: visualize.

First rule: ny x no--- x n3. Product Rule.
Second rule: when order doesn’t matter divide..when possible.

A

3 card Poker deals: 52 x 51 x 50 = 221. First rule.
Poker hands: A?

Hand: Q, K, A.

Deals: Q. K, A, QA K, K.A, QKA Q, AK,Q,AQ,K.
A=3x2x1

Example: visualize.

First rule: ny x no--- x n3. Product Rule.
Second rule: when order doesn’t matter divide..when possible.

A

3 card Poker deals: 52 x 51 x 50 = 221. First rule.
Poker hands: A?

Hand: Q, K, A.

Deals: Q. K, A, QA K, K.A, QKA Q, AK,Q,AQ,K.
A =3 x2x1 First rule again.

Example: visualize.

First rule: ny x no--- x n3. Product Rule.
Second rule: when order doesn’t matter divide..when possible.

A

3 card Poker deals: 52 x 51 x 50 = 221. First rule.
Poker hands: A?
Hand: Q, K, A.
Deals: Q. K, A, QA K, K.A, QKA Q, AK,Q,AQ,K.
A =3 x2x1 First rule again.
Total:

Example: visualize.

First rule: ny x no--- x n3. Product Rule.
Second rule: when order doesn’t matter divide..when possible.

A

3 card Poker deals: 52 x 51 x 50 = 221. First rule.
Poker hands: A?

Hand: Q, K, A.

Deals: Q. K, A, QA K, K.A, QKA Q, AK,Q,AQ,K.
A =3 x2x1 First rule again.

. 52!

Example: visualize.

First rule: ny x no--- x n3. Product Rule.
Second rule: when order doesn’t matter divide..when possible.

A

3 card Poker deals: 52 x 51 x 50 = 221. First rule.
Poker hands: A?
Hand: Q, K, A.
Deals: Q, K, A, QA K, KA, QK,AQ,AK,Q, AQK.
A=3 ng x 1 First rule again.
]

Total: zg75; Second Rule!

Example: visualize.

First rule: ny x no--- x n3. Product Rule.
Second rule: when order doesn’t matter divide..when possible.

A

3 card Poker deals: 52 x 51 x 50 = 221. First rule.
Poker hands: A?

Hand: Q, K, A.

Deals: Q. K, A, QA K, K.A, QKA Q, AK,Q,AQ,K.
A =3 x2x1 First rule again.

. 521
Total: zg75; Second Rule!

Choose k out of n.

Example: visualize.

First rule: ny x no--- x n3. Product Rule.
Second rule: when order doesn’t matter divide..when possible.

A

3 card Poker deals: 52 x 51 x 50 = 221. First rule.
Poker hands: A?

Hand: Q, K, A.

Deals: Q. K, A, QA K, K.A, QKA Q, AK,Q,AQ,K.
A =3 x2x1 First rule again.

52!
Total: zg75; Second Rule!

Choose k out of n
Ordered set: 7~ k)l

Example: visualize.

First rule: ny x no--- x n3. Product Rule.
Second rule: when order doesn’t matter divide..when possible.

A

3 card Poker deals: 52 x 51 x 50 = 221. First rule.
Poker hands: A?

Hand: Q, K, A.

Deals: Q. K, A, QA K, K.A, QKA Q, AK,Q,AQ,K.
A =3 x2x1 First rule again.

52!
Total: zg75; Second Rule!

Choose k out of n
Ordered set: 7% k)l
What is A?

Example: visualize.

First rule: ny x no--- x n3. Product Rule.
Second rule: when order doesn’t matter divide..when possible.

A

3 card Poker deals: 52 x 51 x 50 = 221. First rule.
Poker hands: A?

Hand: Q, K, A.

Deals: Q. K, A, QA K, K.A, QKA Q, AK,Q,AQ,K.
A =3 x2x1 First rule again.

52!
Total: zg75; Second Rule!

Choose k out of n
Ordered set: 7% k)l
What is A? k!

Example: visualize.

First rule: ny x no--- x n3. Product Rule.
Second rule: when order doesn’t matter divide..when possible.

A

3 card Poker deals: 52 x 51 x 50 = 221. First rule.
Poker hands: A?

Hand: Q, K, A.

Deals: Q. K, A, QA K, K.A, QKA Q, AK,Q,AQ,K.
A =3 x2x1 First rule again.

52!
Total: zg75; Second Rule!

Choose k out of n
Ordered set: 7% k)l
What is A? k! First rule again.

Example: visualize.

First rule: ny x no--- x n3. Product Rule.
Second rule: when order doesn’t matter divide..when possible.

A

3 card Poker deals: 52 x 51 x 50 = 221. First rule.
Poker hands: A?

Hand: Q, K, A.

Deals: Q. K, A, QA K, K.A, QKA Q, AK,Q,AQ,K.
A =3 x2x1 First rule again.

52!
Total: zg75; Second Rule!

Choose k out of n

Ordered set: 7% k)l

What is A? k! F|rst rule again.
— Total: = k),k.

Example: visualize.

First rule: ny x no--- x n3. Product Rule.
Second rule: when order doesn’t matter divide..when possible.

A

3 card Poker deals: 52 x 51 x 50 = 221. First rule.
Poker hands: A?

Hand: Q, K, A.

Deals: Q. K, A, QA K, K.A, QKA Q, AK,Q,AQ,K.
A =3 x2x1 First rule again.

52!
Total: zg75; Second Rule!

Choose k out of n
Ordered set: 7% k)l
What is A? k! F|rst rule again.
— Total: = k ma Second rule.

Example: visualize

First rule: ny x no--- x n3. Product Rule.
Second rule: when order doesn’t matter divide..when possible.

A

Example: visualize

First rule: ny x no--- x n3. Product Rule.
Second rule: when order doesn’t matter divide..when possible.

A

Orderings of ANAGRAM?

Example: visualize

First rule: ny x no--- x n3. Product Rule.
Second rule: when order doesn’t matter divide..when possible.

A

Orderings of ANAGRAM?
Ordered Set: 7!

Example: visualize

First rule: ny x no--- x n3. Product Rule.
Second rule: when order doesn’t matter divide..when possible.

A

Orderings of ANAGRAM?
Ordered Set: 7! First rule.

Example: visualize

First rule: ny x no--- x n3. Product Rule.
Second rule: when order doesn’t matter divide..when possible.

A

Orderings of ANAGRAM?
Ordered Set: 7! First rule.
A’s are the same!

Example: visualize

First rule: ny x no--- x n3. Product Rule.
Second rule: when order doesn’t matter divide..when possible.

A

Orderings of ANAGRAM?
Ordered Set: 7! First rule.
A’s are the same!

What is A?

Example: visualize

First rule: ny x no--- x n3. Product Rule.
Second rule: when order doesn’t matter divide..when possible.

A

Orderings of ANAGRAM?
Ordered Set: 7! First rule.
A’s are the same!

What is A?
ANAGRAM

Example: visualize

First rule: ny x no--- x n3. Product Rule.
Second rule: when order doesn’t matter divide..when possible.

A

Orderings of ANAGRAM?
Ordered Set: 7! First rule.
A’s are the same!

What is A?
ANAGRAM
A{NA>GRA3sM |

Example: visualize

First rule: ny x no--- x n3. Product Rule.
Second rule: when order doesn’t matter divide..when possible.

A

Orderings of ANAGRAM?
Ordered Set: 7! First rule.
A’s are the same!
What is A?
ANAGRAM
A{NA>GRAsM ; A,NA;GRASM |

Example: visualize

First rule: ny x no--- x n3. Product Rule.
Second rule: when order doesn’t matter divide..when possible.

A

Orderings of ANAGRAM?
Ordered Set: 7! First rule.
A’s are the same!
What is A?
ANAGRAM
A{NA>GRA3M , A,NA;GRAsM , ...

Example: visualize

First rule: ny x no--- x n3. Product Rule.
Second rule: when order doesn’t matter divide..when possible.

A

Orderings of ANAGRAM?
Ordered Set: 7! First rule.
A’s are the same!
What is A?
ANAGRAM
A{NA>GRA3M , A,NA;GRAsM , ...
A=3x2x1

Example: visualize

First rule: ny x no--- x n3. Product Rule.
Second rule: when order doesn’t matter divide..when possible.

A

Orderings of ANAGRAM?
Ordered Set: 7! First rule.
A’s are the same!
What is A?
ANAGRAM
A{NA>GRA3M , A,NA;GRAsM , ...
A=3x2x1=3!

Example: visualize

First rule: ny x no--- x n3. Product Rule.
Second rule: when order doesn’t matter divide..when possible.

A

Orderings of ANAGRAM?
Ordered Set: 7! First rule.
A’s are the same!
What is A?
ANAGRAM
AiNA>GRA3M , A,NA;GRASM, ...
A=3x2x1=3! Firstrule!

Example: visualize

First rule: ny x no--- x n3. Product Rule.
Second rule: when order doesn’t matter divide..when possible.

A

Orderings of ANAGRAM?
Ordered Set: 7! First rule.
A’s are the same!
What is A?
ANAGRAM
AiNA>GRA3M , A,NA;GRASM, ...
A:3>;2><1 =3! First rule!
|

> 3

Example: visualize

First rule: ny x no--- x n3. Product Rule.
Second rule: when order doesn’t matter divide..when possible.

A

Orderings of ANAGRAM?
Ordered Set: 7! First rule.
A’s are the same!
What is A?
ANAGRAM
AiNA>GRA3M , A,NA;GRASM, ...
A:3>;2><1 =3! First rule!
|

= 5 Second rule!

Summary.

k Samples with replacement from n items: n*.

Summary.

k Samples with replacement from nitems: n*.
Sample without replacement: o= k)

Summary.

k Samples with replacement from nitems: n*.
Sample without replacement: o= k)

Summary.

k Samples with replacement from nitems: n*.
Sample without replacement: o= k)

Summary.

k Samples with replacement from nitems: n*.
Sample without replacement: o= k)

Sample without replacement and order doesn’t matter: (/) = (n+(l)lkl
“n choose K~

Summary.

k Samples with replacement from nitems: n*.
Sample without replacement: o= k)
Sample without replacement and order doesn’t matter: (/) = (n%k'),kl

“n choose K~
(Count using first rule and second rule.)

Summary.

k Samples with replacement from nitems: n*.
Sample without replacement: o= k)
Sample without replacement and order doesn’t matter: (/) = (n%k'),kl

“n choose K~
(Count using first rule and second rule.)

Summary.

k Samples with replacement from nitems: n*.

Sample without replacement: o= k)

Sample without replacement and order doesn’t matter: (/) = (n%k'),kl
“n choose K~

(Count using first rule and second rule.)

k+n—1)_

Sample with replacement and order doesn’t matter: (AP

Summary.

k Samples with replacement from nitems: n*.
Sample without replacement: o= k)
Sample without replacement and order doesn’t matter: (/) = (n%k'),kl

“n choose K~
(Count using first rule and second rule.)

k+n—1)_

Sample with replacement and order doesn’t matter: (AP

Count with stars and bars:

Summary.

k Samples with replacement from nitems: n*.

Sample without replacement: o= k)

Sample without replacement and order doesn’t matter: (/) = (n%k'),kl
“n choose K~

(Count using first rule and second rule.)

k+n—1)_

Sample with replacement and order doesn’t matter: (AP

Count with stars and bars:
how many ways to add up n numbers to get k.

Summary.

k Samples with replacement from nitems: n*.

Sample without replacement: o= k)

Sample without replacement and order doesn’t matter: (/) = (n%k'),kl
“n choose K~

(Count using first rule and second rule.)

Sample with replacement and order doesn’t matter: (“%"").
Count with stars and bars:
how many ways to add up n numbers to get k.

Each number is number of samples of type i

Summary.

k Samples with replacement from nitems: n*.

Sample without replacement: o= k)

Sample without replacement and order doesn’t matter: (/) = (n%k'),kl
“n choose K~

(Count using first rule and second rule.)

Sample with replacement and order doesn’t matter: (“%"").
Count with stars and bars:
how many ways to add up n numbers to get k.

Each number is number of samples of type i which adds to total, k.

Simple Inclusion/Exclusion

Sum Rule: For disjoint sets Sand T, |SUT|=|S|+|T]|

Simple Inclusion/Exclusion

Sum Rule: For disjoint sets Sand T, |SUT|=|S|+|T]|
Example: How many permutations of nitems start with 1 or 2?

Simple Inclusion/Exclusion

Sum Rule: For disjoint sets Sand T, |SUT|=|S|+|T]|

Example: How many permutations of nitems start with 1 or 2?
1x(n—1)!

Simple Inclusion/Exclusion

Sum Rule: For disjoint sets Sand T, |SUT|=|S|+|T]|

Example: How many permutations of nitems start with 1 or 2?
1x(n=1) +1 x(n—-1)!

Simple Inclusion/Exclusion

Sum Rule: For disjoint sets Sand T, |SUT|=|S|+|T]|

Example: How many permutations of nitems start with 1 or 2?
1x(n=1) +1 x(n—-1)!

Inclusion/Exclusion Rule: For any Sand T,
|[SUT|=|S|+|T|—|SNT]|.

Simple Inclusion/Exclusion

Sum Rule: For disjoint sets Sand T, |SUT|=|S|+|T]|

Example: How many permutations of nitems start with 1 or 2?
Ix(n—=1)+1x(n-1)!

Inclusion/Exclusion Rule: For any Sand T,
|[SUT|=|S|+|T|—|SNT]|.

Example: How many 10-digit phone numbers have 7 as their first or
second digit?

Simple Inclusion/Exclusion

Sum Rule: For disjoint sets Sand T, |SUT|=|S|+|T]|

Example: How many permutations of nitems start with 1 or 2?
1x(n=1) +1 x(n—-1)!

Inclusion/Exclusion Rule: For any Sand T,
|[SUT|=|S|+|T|—|SNT]|.

Example: How many 10-digit phone numbers have 7 as their first or
second digit?

S = phone numbers with 7 as first digit.

Simple Inclusion/Exclusion

Sum Rule: For disjoint sets Sand T, |SUT|=|S|+|T]|

Example: How many permutations of nitems start with 1 or 2?
1x(n=1) +1 x(n—-1)!

Inclusion/Exclusion Rule: For any Sand T,
|[SUT|=|S|+|T|—|SNT]|.

Example: How many 10-digit phone numbers have 7 as their first or
second digit?

S = phone numbers with 7 as first digit.|S| = 10°

Simple Inclusion/Exclusion

Sum Rule: For disjoint sets Sand T, |SUT|=|S|+|T]|

Example: How many permutations of nitems start with 1 or 2?
1x(n=1) +1 x(n—-1)!

Inclusion/Exclusion Rule: For any Sand T,
|[SUT|=|S|+|T|—|SNT]|.

Example: How many 10-digit phone numbers have 7 as their first or
second digit?

S = phone numbers with 7 as first digit.|S| = 10°
T = phone numbers with 7 as second digit.

Simple Inclusion/Exclusion

Sum Rule: For disjoint sets Sand T, |SUT|=|S|+|T]|

Example: How many permutations of nitems start with 1 or 2?
1x(n=1) +1 x(n—-1)!

Inclusion/Exclusion Rule: For any Sand T,
|[SUT|=|S|+|T|—|SNT]|.

Example: How many 10-digit phone numbers have 7 as their first or
second digit?

S = phone numbers with 7 as first digit.|S| = 10°
T = phone numbers with 7 as second digit. |T| = 10°.

Simple Inclusion/Exclusion

Sum Rule: For disjoint sets Sand T, |SUT|=|S|+|T]|

Example: How many permutations of nitems start with 1 or 2?
1x(n=1) +1 x(n—-1)!

Inclusion/Exclusion Rule: For any Sand T,
|[SUT|=|S|+|T|—|SNT]|.

Example: How many 10-digit phone numbers have 7 as their first or
second digit?

S = phone numbers with 7 as first digit.|S| = 10°
T = phone numbers with 7 as second digit. |T| = 10°.
SN T = phone numbers with 7 as first and second digit.

Simple Inclusion/Exclusion

Sum Rule: For disjoint sets Sand T, |SUT|=|S|+|T]|

Example: How many permutations of nitems start with 1 or 2?
1x(n=1) +1 x(n—-1)!

Inclusion/Exclusion Rule: For any Sand T,
|[SUT|=|S|+|T|—|SNT]|.

Example: How many 10-digit phone numbers have 7 as their first or
second digit?

S = phone numbers with 7 as first digit.|S| = 10°
T = phone numbers with 7 as second digit. |T| = 10°.
SN T = phone numbers with 7 as first and second digit. |SN T| = 108.

Simple Inclusion/Exclusion

Sum Rule: For disjoint sets Sand T, |SUT|=|S|+|T]|

Example: How many permutations of nitems start with 1 or 2?
1x(n=1) +1 x(n—-1)!

Inclusion/Exclusion Rule: For any Sand T,
|[SUT|=|S|+|T|—|SNT]|.

Example: How many 10-digit phone numbers have 7 as their first or
second digit?

S = phone numbers with 7 as first digit.|S| = 10°

T = phone numbers with 7 as second digit. |T| = 10°.

SN T = phone numbers with 7 as first and second digit. |SN T| = 108.
Answer: |S|+|T|—|SNT|=10°+10%—108.

Combinatorial Proofs.

Theorem: (") = (7) + (,")-
Proof: How many size k subsets of n+1?

Combinatorial Proofs.

Theorem: (") = ()) +(,",).
Proof: How many size k subsets of n+1? (/).

Combinatorial Proofs.

Theorem: ("") = (3) + (")
Proof: How many size k subsets of n+1? (”;1).
How many size k subsets of n+17?

Combinatorial Proofs.

Theorem: (") = ()) +(,",).

Proof: How many size k subsets of n+1? (/).

How many size k subsets of n+17?
How many contain the first element?

Combinatorial Proofs.

Theorem: (") = ()) +(,",).

Proof: How many size k subsets of n+1? (/).

How many size k subsets of n+17?
How many contain the first element?
Chose first element,

Combinatorial Proofs.

Theorem: (") = ()) +(,",).

Proof: How many size k subsets of n+1? (/).

How many size k subsets of n+17?
How many contain the first element?

Chose first element, need to choose k — 1 more from remaining n
elements.

Combinatorial Proofs.

Theorem: (*1") = (7) + (")

Proof: How many size k subsets of n+1? (/).

How many size k subsets of n+17?

How many contain the first element?

Chose first element, need to choose k — 1 more from remaining n
elements.

= («4)

Combinatorial Proofs.

Theorem: (*1") = (7) + (")

Proof: How many size k subsets of n+1? (/).

How many size k subsets of n+17?

How many contain the first element?

Chose first element, need to choose k — 1 more from remaining n
elements.

= («4)

Combinatorial Proofs.

. 1
Theorem: (";") = () + (,")-
Proof: How many size k subsets of n+1? (/).
How many size k subsets of n+17?
How many contain the first element?

Chose first element, need to choose k — 1 more from remaining n
elements.

= («4)
How many don’t c