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Theorem:
Pr[no collision] ~ exp{—%}, for large enough n.

In particular, Pr[no collision] ~ 1/2 for m?/(2n) ~In(2), i.e.,

m=+/2In(2)n~1.2v/n.

E.g., 1.2v/20 ~5.4.
Roughly, Pr[collision] ~ 1/2 for m= \/n. (%%~ 0.6.)
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The Calculation.

A; = no collision when jth ball is placed in a bin.
PriAilAi_10---NA ] =(1-2h.
no collision = AiN---NAmn.

Product rule:
PI’[A1 ﬁ---ﬂAm] = PF[A1]PF[A2|A1]Pf[Am|A1 ﬂ---ﬂAm_1]

= Pr[no collision] = <1 — :}) <1 _ m,_, 1 > .

Hence,
m—1 k m—1 k
In(Pr[no collision]) = Y In(1—=)= Y (-=) "
k=1 n = n
B _1m(m—1)(T) P
n 2 2n

(*) We used In(1 — &) ~ —¢ for |g| < 1.
D14244m-—1=(m-1)m/2.
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exp{—x}:1—x+%x2+---z1—x, for x| < 1.

Hence, —x =~ In(1 —x) for |x| < 1.
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Today’s your birthday, it's my birthday too..

Probability that m people all have different birthdays?
With n = 365, one finds

Prlcollision] ~ 1/2 if m~ 1.2v/365 ~ 23.
If m=60, we find that

m? 2
Pr[no collision] ~ exp{—ﬁ} = eXp{_Z NETE

} ~0.007.

If m= 366, then Pr[no collision] = 0. (No approximation here!)
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Checksums!

Consider a set of m files.

Each file has a checksum of b bits.

How large should b be for Pr[share a checksum] < 10737
Claim: b>2.9In(m)+9.

Proof:

Let n = 2P be the number of checksums.
We know Pr[no collision] ~ exp{—m?/(2n)} ~ 1 —m?/(2n).
Hence,
Pr[no collision] ~1—1073 < m?/(2n) ~ 1073
& 2n~ mP10® & 20+ ~ m?210
< b+1~10+2log,(m) ~10+2.9In(m).

Note: log,(x) =logs(e)In(x) = 1.44In(x).
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Coupon Collector Problem.

There are n different baseball cards.
(Brian Wilson, Jackie Robinson, Roger Hornsby, ...)

One random baseball card in each cereal box.

Theorem: If you buy m boxes,
(a) Pr[miss one specific item] ~ e~ 7

(b) Pr[miss any one of the items] < nen.
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Coupon Collector Problem: Analysis.

Event A, = ‘fail to get Brian Wilson in m cereal boxes’

Fail the first time: (1 —1)
Fail the second time: (1—1)
And so on ... for mtimes. Hence,

PrlAm] = (1—=)x---x(1-

In(Pr[Am]) = mln(1—%)zmx(—%)

PriAm] = exp{—m}.

For pm = %, we need around nin2 = 0.69n boxes.
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Collect all cards?

Experiment: Choose m cards at random with replacement.
Events: E, = ‘fail to get playerk’ , fork =1, ..., n
Probability of failing to get at least one of these n players:

p:= Pf[E1 UEQ---UEn]
How does one estimate p? Union Bound:
p=Prl[E{UE;---UE] < Pr[E4] + Pr[Ez]--- Pr[En].

Pr[Ek]ze‘%,k:L...,n.
Plug in and get

33

p<ne n.
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Collect all cards?

Thus,

ElE]

Pr[missing at least one card] < ne .

Hence,
Pr[missing at least one card] < p when m > nIn(Z).
Togetp=1/2, set m=nin(2n).
(p<ne 7 <nem/P) < n(B)y<p.)
E.g., n=102= m=530;n=10% = m=7600.
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Main results:

» Bayes’ Rule: Pr{An|B] = pmQm/(P1Gi + -+ Pmaum)-
» Product Rule:
PI’[A1 ﬂ-'-ﬂAn] = PF[A1]PI’[A2|A1]PI’[A,7’A1 ﬂ--'ﬂAn,1].

» Balls in bins: m balls into n > m bins.

m?
Pr[no collisions] ~ exp{— E}

» Coupon Collection: nitems. Buy m cereal boxes.

3[3

Pr[miss one specific item] ~ e n; Pr[miss any one of the items] <ne™ n.

Key Mathematical Fact: In(1 —¢) ~ —e.
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1. Random Variables.
2. Expectation
3. Distributions.
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Experiment: roll two dice.

Sample Space: {(1,1),(1,2),...,(6,6)} = {1,...,6}?
How many pips?

Experiment: flip 100 coins.

Sample Space: {HHH---H,THH---H,...,TTT--- T}
How many heads in 100 coin tosses?

Experiment: choose a random student in ¢s70.
Sample Space: {Adam, Jin, Bing,...,Angeline}
What midterm score?

Experiment: hand back assignments to 3 students at random.
Sample Space: {123,132,213,231,312,321}
How many students get back their own assignment?

In each scenario, each outcome gives a number.
The number is a (known) function of the outcome.
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A random variable, X, for an experiment with sample space Q
is a function X : Q — R.

Thus, X(-) assigns a real number X(w) to each o € Q.

Q
X()
™\
| .
3.9 I 2.1 7.0
Xlwr) =21 X(ws) = 7.0; X (wa) = X(wy) = -39

The function X(-) is defined on the outcomes .
The function X(-) is not random, not a variable!

What varies at random (from experiment to experiment)? The
outcome!



Example 1 of Random Variable

Experiment: roll two dice.



Example 1 of Random Variable

Experiment: roll two dice.
Sample Space: {(1,1),(1,2),...,(6,6)} ={1,...,6}?



Example 1 of Random Variable

Experiment: roll two dice.

Sample Space: {(1,1),(1,2),...,(6,6)} ={1,...,6}?
Random Variable X: number of pips.

X(1,1)=2



Example 1 of Random Variable

Experiment: roll two dice.

Sample Space: {(1,1),(1,2),...,(6,6)} ={1,...,6}?
Random Variable X: number of pips.

X(1,1)=2

X(1,2) =3,



Example 1 of Random Variable

Experiment: roll two dice.

Sample Space: {(1,1),(1,2),...,(6,6)} ={1,...,6}?
Random Variable X: number of pips.

X(1,1)=2

X(1,2) =3,



Example 1 of Random Variable

Experiment: roll two dice.

Sample Space: {(1,1),(1,2),...,(6,6)} ={1,...,6}?
Random Variable X: number of pips.

X(1,1)=2

X(1,2) =3,



Example 1 of Random Variable

Experiment: roll two dice.

Sample Space: {(1,1),(1,2),...,(6,6)} ={1,...,6}?
Random Variable X: number of pips.

X(1,1)=2

X(1,2) =3,



Example 2 of Random Variable

Experiment: flip three coins



Example 2 of Random Variable

Experiment: flip three coins
Sample Space: {HHH, THH,HTH, TTH,HHT , THT ,HTT,TTT}



Example 2 of Random Variable

Experiment: flip three coins
Sample Space: {HHH, THH,HTH, TTH,HHT , THT ,HTT,TTT}
Winnings: if win 1 on heads, lose 1 on tails: X



Example 2 of Random Variable

Experiment: flip three coins
Sample Space: {HHH, THH,HTH, TTH,HHT , THT ,HTT,TTT}
Winnings: if win 1 on heads, lose 1 on tails: X

X(HHH) =3



Example 2 of Random Variable

Experiment: flip three coins
Sample Space: {HHH, THH,HTH, TTH,HHT , THT ,HTT,TTT}
Winnings: if win 1 on heads, lose 1 on tails: X

X(HHH)=3 X(THH)=1



Example 2 of Random Variable

Experiment: flip three coins
Sample Space: {HHH, THH,HTH, TTH,HHT , THT ,HTT,TTT}
Winnings: if win 1 on heads, lose 1 on tails: X

X(HHH)=3 X(THH)=1 X(HTH) =1



Example 2 of Random Variable

Experiment: flip three coins
Sample Space: {HHH, THH,HTH, TTH,HHT , THT ,HTT,TTT}
Winnings: if win 1 on heads, lose 1 on tails: X

X(HHH)=3 X(THH)=1 X(HTH)=1 X(TTH)= -1



Example 2 of Random Variable

Experiment: flip three coins
Sample Space: {HHH, THH,HTH, TTH,HHT , THT ,HTT,TTT}
Winnings: if win 1 on heads, lose 1 on tails: X
X(HHH)=3 X(THH)=1 X(HTH)=1 X(TTH)= -1
X(HHT) =1



Example 2 of Random Variable

Experiment: flip three coins
Sample Space: {HHH, THH,HTH, TTH,HHT , THT ,HTT,TTT}
Winnings: if win 1 on heads, lose 1 on tails: X
X(HHH)=3 X(THH)=1 X(HTH)=1 X(TTH)= -1
X(HHT)=1 X(THT)= -1



Example 2 of Random Variable

Experiment: flip three coins
Sample Space: {HHH, THH,HTH, TTH,HHT , THT ,HTT,TTT}
Winnings: if win 1 on heads, lose 1 on tails: X
X(HHH)=3 X(THH)=1 X(HTH)=1 X(TTH)= -1
X(HHT)=1 X(THT)=-1 X(HTT)= -1



Example 2 of Random Variable

Experiment: flip three coins
Sample Space: {HHH, THH,HTH, TTH,HHT , THT ,HTT,TTT}
Winnings: if win 1 on heads, lose 1 on tails: X
X(HHH)=3 X(THH)=1 X(HTH)=1 X(TTH)= -1
X(HHT)=1 X(THT)=-1 X(HTT)=-1 X(TTT)=-3



Number of pips in two dice.



Number of pips in two dice.
“What is the likelihood of getting n pips?”



Number of pips in two dice.
“What is the likelihood of getting n pips?”

XH8) = {w ]| X(w) =8}
Die 2 , X7H10) = {w | X(w) = 10}
\

G _f.

=

= W

2 3 4 5 6 7 8 9 10 11 12



Number of pips in two dice.
“What is the likelihood of getting n pips?”

XH8) = {w ]| X(w) =8}

Die 2 , X7H10) = {w | X(w) = 10}
- \
6 _I_

=

= W

2 3 4 5 6 7 8 9 10 11 12

PriX=10]=



Number of pips in two dice.
“What is the likelihood of getting n pips?”

XH8) = {w ]| X(w) =8}

Die 2 , X7H10) = {w | X(w) = 10}
) \
b T

— Die 1

i I
; o R
¥ l Y o¥

2 3 4 5 6 7 8 9 10 11 12

PriX =10]=3/36 =



Number of pips in two dice.
“What is the likelihood of getting n pips?”
XH8) = {w ]| X(w) =8}

Die 2 , X7H10) = {w | X(w) = 10}
\
P W, S | @

— Die 1

i I
; o R
¥ l Y o¥

2 3 4 5 6 7 8 9 10 11 12

Pr[X =10]=3/36 = Pr[X~'(10)];



Number of pips in two dice.
“What is the likelihood of getting n pips?”

XH8) = {w ]| X(w) =8}

Die 2 , X7H10) = {w | X(w) = 10}
) \
b T J 1

— Die 1

,‘: ‘ ‘i

: Lo

; o R
\d l A

2 3 4 5 6 7 8 9 10 11 12

Pr(X=10]=3/36=Pr[X '(10)]; Pr[X =8] =



Number of pips in two dice.
“What is the likelihood of getting n pips?”

XH8) = {w ]| X(w) =8}

Die 2 , X7H10) = {w | X(w) = 10}
) \
b T J 1

— Die 1

: Lo
; o R
¥ l Y ooy

2 3 4 5 6 7 8 9 10 11 12

Pr[X=10]=3/36 = Pr[X~1(10)]; Pr[X =8] =5/36 =



Number of pips in two dice.
“What is the likelihood of getting n pips?”

XH8) = {w ]| X(w) =8}

Die 2 , X7H10) = {w | X(w) = 10}
) \
b T J 1

— Die 1

: Lo
; o R
¥ l Y ooy

2 3 4 5 6 7 8 9 10 11 12

Pr[X =10]=3/36 = Pr[X~'(10)]; Pr[X =8] =5/36 = Pr[X'(8)].
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Distribution

The probability of X taking on a value a.

Definition: The distribution of a random variable X, is
{(a,Pr[X =al]):ac &}, where </ is the range of X.

Q

Pr[X = a] := Pr[X~"(a)] where X '(a) .= {0 | X(w) = a}.
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Experiment: hand back assignments to 3 students at random.
Sample Space: Q ={123,132,213,231,312,321}

How many students get back their own assignment?

Random Variable: values of X(®) : {3,1,1,0,0,1}

Distribution:

0, w.p.1/3
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Number of pips.

Experiment: roll two dice.

XHE = fw | X(w) =8}
Die 2 X H10) = {w | X(w) = 10}

(1,2.3.4,5.6,5.4.3,2.1) x (1/36)

6 v W o 13
N e e e e

2345678910112
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Expectation - Definition

Definition: The expected value of a random variable X is

EX]=) axPriX=a].

The expected value is also called the mean.

According to our intuition, we expect that if we repeat an
experiment a large number N of times and if Xj,..., Xy are the
successive values of the random variable, then

Xi+-+ Xy

N ~ E[X].

That is indeed the case, in the same way that the fraction of
times that X = x approaches Pr[X = x].

This (nontrivial) result is called the Law of Large Numbers.

The subjectivist(bayesian) interpretation of E[X] is less obvious.
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Expectation: A Useful Fact

Theorem:

ElX] =Y X(w) x Prlo)].

Proof: EX] = YaxPriX=a

= Zax Z Pr{w]

w:X(w)=a

= ) Z X( )Prlo]

a o:X(o

ZX Pr[a)]

Distributive property of multiplication over addition.
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Expectation and Average.

There are n students in the class;
X(m) = score of student m, for m=1,2,...,n.
“Average score” of the n students: add scores and divide by n:

X(1)+X(1) +-+X(n)

Average =
n

Experiment: choose a student uniformly at random.

Uniform sample space: Q= {1,2,---,n}, Prfw] =1/n, for all @.
Random Variable: midterm score: X(w).

Expectation:

E(X) =Y X(w)Prlo] = ZX(a))%.

Hence,
Average = E(X).

This holds for a uniform probability space.
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The binomial distribution.
Flip n coins with heads probability p.

Random variable: number of heads.
Binomial Distribution: Pr[X = i], for each i.
How many sample points in event “X = j"?

i heads out of n coin flips = (7)

What is the probability of o if w has i heads?
Probability of heads in any position is p.
Probability of tails in any position is (1 —p).

So, we get

Prio] =p'(1-p)"".

Probability of “X = i” is sum of Pr[w], ® € “X = /".

PriX =i]= <';’> p'(1—p)"" i=0,1,...,n: B(n,p) distribution



The binomial distribution.

1 n

TTHTHTTTHTHT

\\/ \/

l - JJ p'“‘ (1 _ p)n—m
n — m times m times

n
( ) outcomes with m Hs and n — m T's
m

= P'I.[JY = TN_.] — ( )I)‘fr’i{l )n m
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Error channel and...

A packet is corrupted with probability p.
Send n-+ 2k packets.

Probability of at most k corruptions.
n+2k\ ; i
Z ( ; ),0’(1 _p)n+2k i
i<k

Also distribution in polling, experiments, etc.
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Expectation of Binomial Distibution
Parameter p and n. What is expectation?
MW:H:(%#U—M”U:QL”ermmdmmWW

EIX] =Y ix PrX =1].

Uh oh? Well... It is pn.
Proof? After linearity of expectation this is easy.
Waiting is good.
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Uniform Distribution

Roll a six-sided balanced die. Let X be the number of pips
(dots). Then X is equally likely to take any of the values
{1,2,...,6}. We say that X is uniformly distributed in
{1,2,...,6}.

More generally, we say that X is uniformly distributed in
{1,2,....,n}if PrIX=m]|=1/nform=1,2,...,n.

In that case,

n L 1 1n(n+1) n+A
E[X]_n§1mPr[X_m]_n;1me_E 5= 5
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The Poisson distribution is named after:

Siméon Poisson

Siméon Denis Poisson (1781-1840)
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The geometric distribution is named after:
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| could not find a picture of D. Binomial, sorry.
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Summary

| Random Variables|

» A random variable X is a function X : Q — R.

» Pr[X =a]:=Pr[X~"(a)] = Pri{w | X(®) = a}].

» Pr[X c Al := Pr[X~1(A)].

» The distribution of X is the list of possible values and their
probability: {(a, Pr[X = a]),ac «/}.

» E[X]:=Y,aPr[X =a].

» Expectation is Linear.

» B(n,p),U[1:n],G(p),P(1).



