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Simplest physical model of a non-uniform probability space:
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Physical experiment Probability model

Q = {Red, Green, Yellow, Blue}

Pr[Red] = 3 Pr[Green] 10

Note: Probabilities are restricted to rational numbers: 3.
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of circumference

Physical experiment Probability model

The roulette wheel stops in sector @ with probability py,.

Q={1,2,3,...,N}, Prlo] = py.
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» The random experiment selects one and only one outcome in €.

» For instance, when we flip a fair coin twice

» Q={HH, TH,HT,TT}
» The experiment selects one of the elements of Q.

> In this case, its wrong to think that Q = {H, T} and that the
experiment selects two outcomes.

» Why? Because this would not describe how the two coin flips
are related to each other.

» For instance, say we glue the coins side-by-side so that they
face up the same way. Then one gets HH or TT with probability
50% each. This is not captured by ‘picking two outcomes.
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Q Q Q
AuUB A\ B
A
Figure : Two events Figure : Union (or) Figure : Difference (A,
not B)
Q Q Q
ANB AAB
A
Figure : Complement Figure : Intersection Figure : Symmetric

(not) (and) difference (only one)
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Probability of exactly one ‘heads’ in two coin flips?
Idea: Sum the probabilities of all the different outcomes that have
exactly one ‘heads’: HT, TH.

This leads to a definition!
Definition:

» Anevent, E, is a subset of outcomes: E C Q.
» The probability of E is defined as Pr[E] =Y g Pr{o].
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Pr{w]
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Physical experiment Probability model

Q = {Red, Green, Yellow, Iilue}
Pr[Red] = 3 Pr[Green] , etc.
3+4 3 4

E ={Red, Green} = Pr[E] = o =10 t70°" Pr[Red] + Pr[Green].
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Sample Space, Q = {HH,HT,TH, TT}.
Uniform probability space: Pr[HH]| = Pr[HT] = Pr[TH] = Pr[TT] = %.
Event, E, “exactly one heads”: {TH,HT}.
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20 coin tosses
Sample space: Q = set of 20 fair coin tosses.
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» What is more likely?
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Example: 20 coin tosses.

20 coin tosses
Sample space: Q = set of 20 fair coin tosses.

Q={T H}?={0,1}%0; |Q] =2%0.

» What is more likely?

LN O] ::(1717171a1a1517171a1a151717171’171717171)’ or
> wp:=(1,0,1,1,0,0,0,1,0,1,0,1,1,0,1,1,1,0,0,0)?
Answer: Both are equally likely: Pr{m{] = Pr[wg] = T

» What is more likely?

(E1) Twenty Hs out of twenty, or
(E2) Ten Hs out of twenty?
Answer: Ten Hs out of twenty.

Why? There are many sequences of 20 tosses with ten Hs;

only one with twenty Hs. = Pr{E;] = & < Pr[Ep] = 1Bl

1Qf -
20
= =184,756.
|Es| (10) 84,756
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Probability of n heads in 100 coin tosses.

Q= {H,T}%; |q| = 2100,

60

80

100

Event E, = ‘nheads’; |E,| = (‘%)

100
pn = PriEs = &l = (o)

Observe:

» Concentration around mean:
Law of Large Numbers;

» Bell-shape: Central Limit
Theorem.
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Roll a red and a blue die.

Die 2 Q
A T
6 -4
2 -t- -l fSum to 107
4 -1
3 -1-
2 . . .'Smn to 7
1 -4-

> Die 1

: 3
Pr[Sum to 7] = — Pr[Sum to 10] = 36
: (510
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Exactly 50 heads in 100 coin tosses.

Sample space: Q = set of 100 coin tosses = {H, T}'%.
IQ=2x2x..-x2=2100,

Uniform probability space: Pr[w] = zﬂﬁ

Event E = “100 coin tosses with exactly 50 heads”

|E|?

Choos?otgo positions out of 100 to be heads.
|E|= (50)-

(100)
PriE] = 360
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Calculation.
Stirling formula (for large n):

n!%\/277:7n(g)n.

n

(2n> _ V4mn(2n/e)*" 4"

|E| |E| 1 1
Q] T 220 T zn 50x

~ Vazn(n/ey  Van

~

PriE] = L L

.08.
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Probability is Additive

Theorem
(a) If events A and B are disjoint, i.e., AN B =0, then

Pr[Au B] = Pr[A] + Pr|[B].
(b) If events Ay, ..., A, are pairwise disjoint,
i.e., AkxNAm=0,Yk # m, then
Pr{A1U---UAp] = Pr[A{]+---+ Pr[Ag].

Proof:

Obvious.
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(a) Pr[AuUB] = Pr[A]+ Pr[B]— Prl[AnBJ;
(inclusion-exclusion property)

(b) PrlAjU---UAp] < Pr[A{]+ -+ Pr[Ap];
(union bound)

(c) If Aq,... Ay are a partition of Q, i.e.,

pairwise disjoint and UN_, Ay, = Q, then
Pr[B] = Pr[BNA4]+---+ Pr[BNAy].

(law of total probability)

Proof:
(b) is obvious.
Proofs for (a) and (c)? Next...
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Inclusion/Exclusion

Pr[AUB| = Pr[A] + Pr[B] — Pr[AN B]

A B
PriAl=z+y
PriBl=y+z
PrlANB] =y

PrlAUB]|=z+y+ 2

ANB

Another view. Any € AUBis in ANB, AUB, or AN B. So, add it up.
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Total probability

Assume that  is the union of the disjoint sets Aq,...,An.

0

Then,
Pr[B]l = Pr[A1nB]+---+ Pr[AyN BJ.

Indeed, B is the union of the disjoint sets A,nBforn=1,...

In “math”: w € B is in exactly one of A;NB.
Adding up probability of them, get Pr[w] in sum.
..Did | say...

Add it up.
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A similar example.
Two coin flips. At least one of the flips is heads.
— Probability of two heads?
Q={HH,HT,TH, TT}; uniform.
Event A= at least one flip is heads. A= {HH,HT, TH}.

(eTH eHH
‘ € : uniform

New sample space: A; uniform still.
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Event B = two heads.

The probability of two heads if at least one flip is heads.
The probability of B given Ais 1/3.
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Physical experiment

Pr{w]
3110

4/10
2110
1/10

® Red

® Green
[ ]

® Blue

Probability model

Q = {Red, Green, Yellow, Blue}
3  Pr[Redn(Red or Green)]

Pr[Red|Red or Green] = z=

Pr[Red or Green]
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Consider Q = {1,2,...,N} with Pr[n] = pp.
Let A={2,3,4},B={1,2,3}.

D2+ P3 Pri{An B
Pr[A|B] = —
[AlB] P1+ P2+ P3 Pr(B]
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Definition: The conditional probability of B given Ais

priBlA] = PIANE] 'IL’;‘[Q]B]
In Al
In B?

Must be in AN B.

Pr[AnB|
PriBIA] = P2
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What is probability that red is 17?

{2 : Uniform
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Toss a red and a blue die, sum is 4,
What is probability that red is 17?

{2 : Uniform

Die 2 B = ‘red dieis I’
3
i |lei0o 00 0O Q={1,...,6}°
1 1
S |®0 0000 1=1{(1,3),(2,2),(3,1)}
1 |0 00 0O 1 R/
| e B={(1,1),...,(16)}
i | f®lo 0000 ‘
) | llete.0 0 0 0 .
AERA - - A ‘sum is 4
1 | terc @& 0 00
== Die 1
| 4 k] | 5 (5]

PriB|A] = B = §; versus Pr[B] = 1/6.

B is more likely given A.
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Yet more fun with conditional probability.

Toss a red and a blue die, sumis 7,
what is probability that red is 17

€1 : Uniform

Die 2 B ‘red die is 1’

A .
i |1elc 0o 0 00 Q=1{1,...,6}*
RIS A = {(L,6), ..., (6,1))
1 e 000 0 0 o A
IO EEE B=1{(1,1),...,(1,6)}
3 180 0. 000 ‘
2 E.EO o C"‘.:.\*Q__ A =‘sumis 7
1 9.0 0 0 09

== - Die 1

2 3 5 6

Pr[B|A| = B34 = 1 versus Pr(B] = §.

Observing A does not change your mind about the likelihood of B.
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Emptiness..

Suppose | toss 3 balls into 3 bins.
A ="1st bin empty”; B ="2nd bin empty.” What is Pr[A|B]?

Q=1{1,23}"

eoo 5 5
IR BB NES
. | @ E C N E e
C(3,2,9) E (1,1,2) 5 (3,2,2)
w = (bin of red ball, bin of blue ball, )

Pr(B] = Pr[{(a.b,c) | a,b,c € {1,3}] = Pr[{1,3}%] = &
Pr[AnB] = Pr((3,3,3)] = 2%
PriA|B] = Ziagd = G20 = 1/8; vs. PriA| = £.

A s less likely given B: If second bin is empty the first is more likely to
have balls in it.
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Gambler’s fallacy.

Flip a fair coin 51 times.

A = “first 50 flips are heads
B = “the 51st is heads”
Pr[B|A] ?

A= {HH---HT,HH--- HH}
BNA={HH---HH}

Uniform probability space.
PriBIA] = B8 = 1.
Same as Pr[B].

The likelihood of 51st heads does not depend on the previous flips.
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Recall the definition:

_ PrlAnB]
Pr[B|A] = PriAl
Hence,
Pr[An B] = Pr[A]Pr[B|A].
Consequently,

PrlAnBNC]

Pr{(AnB)N C]
—  PrlAnB]Pr[C|ANB]
Pr{A|Pr[B|A|Pr[C|ANB].
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Theorem Product Rule
Let A{,As,..., A, be events. Then
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Let A{,As,..., A, be events. Then

Pf[A1 ﬁ---ﬂAn] = PI’[A1]PI’[A2|A1]PI’[A,7‘A1 ﬁ--~ﬂAn,1].

Proof: By induction.
Assume the result is true for n. (It holds for n=2.) Then,

PrlAiN---NANAp1]
— Pr{A; N0 Ao PrlAny 1| Ar (-1 Ad]
= PI’[A1]PI’[A2|A1]PI’[A,7|A1 ﬁ--~ﬁA,,,1]Pr[An+1 |A1 ﬂ'“ﬂAn],

so that the result holds for n+1. ]
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Event A: the person has lung cancer. Event B: the person is a heavy
smoker. Pr[A|B] =1.17 x Pr[A].

A second look.

Note that
Pr[An B]
Pr(B]
< Pr[ANB] =1.17 x Pr[A]|Pr[B]
<  Pr[BlA|=1.17 x Pr[B].

Pr[A|B] =1.17 x Pr[A] =1.17 x Pr[A]

Conclusion:

» Lung cancer increases the probability of smoking by 17%.

» Lung cancer causes smoking. Really?
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Causality vs. Correlation

Events A and B are positively correlated if
Pr[An B] > Pr[A]|Pr[B].
(E.g., smoking and lung cancer.)

A and B being positively correlated does not mean that A causes B or
that B causes A.

Other examples:

» Tesla owners are more likely to be rich. That does not mean that
poor people should buy a Tesla to get rich.

» People who go to the opera are more likely to have a good
career. That does not mean that going to the opera will improve
your career.

» Rabbits eat more carrots and do not wear glasses. Are carrots
good for eyesight?
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Proving Causality

Proving causality is generally difficult. One has to eliminate external
causes of correlation and be able to test the cause/effect relationship
(e.g., randomized clinical trials).

Some difficulties:
» Aand B may be positively correlated because they have a
common cause. (E.g., being a rabbit.)

» If B precedes A, then B is more likely to be the cause. (E.g.,
smoking.) However, they could have a common cause that
induces B before A. (E.g., smart, CS70, Tesla.)

More about such questions later. For fun, check “N. Taleb: Fooled by
randomness.”
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Total probability

Assume that  is the union of the disjoint sets Aq,...,An.

Q

Then,
Pr[B] = Pr[A1nB]+---+ Pr[AyN BJ.

Indeed, B is the union of the disjoint sets A,NBforn=1,...,N. Thus,

Pr[B] = Pr[A{]Pr[B|A{] + - -+ Pr[An] Pr[B|An]-



Total probability

Assume that Q is the union of the disjoint sets A4, ..., An.

Prior 1 Conditional
probabilities 1 probabilities
__,_9__-. —’4‘71 —_ B
PriA, : /
[ ] Ax Pr[BH“]
Partition
of Q

Pr(B] = PriA]Pr[B|Ai]+--- + Pr[An] Pr{B|An].



Is you coin loaded?
Your coin is fair w.p. 1/2 or such that Pr[H] = 0.6, otherwise.



Is you coin loaded?
Your coin is fair w.p. 1/2 or such that Pr[H] = 0.6, otherwise.

You flip your coin and it yields heads.



Is you coin loaded?
Your coin is fair w.p. 1/2 or such that Pr[H] = 0.6, otherwise.

You flip your coin and it yields heads.
What is the probability that it is fair?



Is you coin loaded?
Your coin is fair w.p. 1/2 or such that Pr[H] = 0.6, otherwise.

You flip your coin and it yields heads.
What is the probability that it is fair?
Analysis:



Is you coin loaded?
Your coin is fair w.p. 1/2 or such that Pr[H] = 0.6, otherwise.

You flip your coin and it yields heads.
What is the probability that it is fair?
Analysis:

A= ‘coin is fair’,



Is you coin loaded?
Your coin is fair w.p. 1/2 or such that Pr[H] = 0.6, otherwise.

You flip your coin and it yields heads.
What is the probability that it is fair?
Analysis:

A= ‘coin is fair', B= ‘outcome is heads’



Is you coin loaded?
Your coin is fair w.p. 1/2 or such that Pr[H] = 0.6, otherwise.

You flip your coin and it yields heads.
What is the probability that it is fair?
Analysis:

A= ‘coin is fair', B= ‘outcome is heads’

We want to calculate P[A|B].



Is you coin loaded?
Your coin is fair w.p. 1/2 or such that Pr[H] = 0.6, otherwise.

You flip your coin and it yields heads.
What is the probability that it is fair?
Analysis:

A= ‘coin is fair', B= ‘outcome is heads’

We want to calculate P[A|B].
We know P[B|A] =



Is you coin loaded?
Your coin is fair w.p. 1/2 or such that Pr[H] = 0.6, otherwise.

You flip your coin and it yields heads.
What is the probability that it is fair?
Analysis:

A= ‘coin is fair', B= ‘outcome is heads’

We want to calculate P[A|B].
We know P[B|A] = 1/2, P[B|A] =



Is you coin loaded?
Your coin is fair w.p. 1/2 or such that Pr[H] = 0.6, otherwise.

You flip your coin and it yields heads.
What is the probability that it is fair?
Analysis:

A= ‘coin is fair', B= ‘outcome is heads’

We want to calculate P[A|B].
We know P[B|A] = 1/2,P[B|A] = 0.6,



Is you coin loaded?
Your coin is fair w.p. 1/2 or such that Pr[H] = 0.6, otherwise.

You flip your coin and it yields heads.
What is the probability that it is fair?
Analysis:

A= ‘coin is fair', B= ‘outcome is heads’

We want to calculate P[A|B].
We know P[B|A] = 1/2, P[B|A] = 0.6, Pr[A] =



Is you coin loaded?
Your coin is fair w.p. 1/2 or such that Pr[H] = 0.6, otherwise.

You flip your coin and it yields heads.
What is the probability that it is fair?
Analysis:

A= ‘coin is fair', B= ‘outcome is heads’

We want to calculate P[A|B].
We know P[B|A] = 1/2, P[B|A] = 0.6, Pr[A] = 1/2



Is you coin loaded?
Your coin is fair w.p. 1/2 or such that Pr[H] = 0.6, otherwise.

You flip your coin and it yields heads.
What is the probability that it is fair?
Analysis:

A= ‘coin is fair', B= ‘outcome is heads’

We want to calculate P[A|B].
We know P[B|A] = 1/2,P[B|A] = 0.6, Pr[A] = 1/2 = Pr|[A]



Is you coin loaded?
Your coin is fair w.p. 1/2 or such that Pr[H] = 0.6, otherwise.

You flip your coin and it yields heads.
What is the probability that it is fair?
Analysis:

A= ‘coin is fair', B= ‘outcome is heads’

We want to calculate P[A|B].
We know P[B|A] = 1/2,P[B|A] = 0.6, Pr[A] = 1/2 = Pr|[A]
Now,

Pr[B] = Prl[AnB]+ PrlAnB] =



Is you coin loaded?
Your coin is fair w.p. 1/2 or such that Pr[H] = 0.6, otherwise.

You flip your coin and it yields heads.
What is the probability that it is fair?
Analysis:

A= ‘coin is fair', B= ‘outcome is heads’

We want to calculate P[A|B].
We know P[B|A] = 1/2,P[B|A] = 0.6, Pr[A] = 1/2 = Pr|[A]
Now,

Pr[B] = Pr[AnB]+ Pr|[AnB] = Pr[A|Pr[B|A]+ Pr[A|Pr[B|A]



Is you coin loaded?
Your coin is fair w.p. 1/2 or such that Pr[H] = 0.6, otherwise.

You flip your coin and it yields heads.
What is the probability that it is fair?
Analysis:

A= ‘coin is fair', B= ‘outcome is heads’

We want to calculate P[A|B].
We know P[B|A] = 1/2,P[B|A] = 0.6, Pr[A] = 1/2 = Pr|[A]
Now,
Pr[B] = Pr[AnB]+ Pr|[AnB] = Pr[A|Pr[B|A]+ Pr[A|Pr[B|A]
(1/2)(1/2)+(1/2)0.6 = 0.55.



Is you coin loaded?
Your coin is fair w.p. 1/2 or such that Pr[H] = 0.6, otherwise.

You flip your coin and it yields heads.
What is the probability that it is fair?
Analysis:

A= ‘coin is fair', B= ‘outcome is heads’

We want to calculate P[A|B].
We know P[B|A] = 1/2,P[B|A] = 0.6, Pr[A] = 1/2 = Pr|[A]

Now,
Pr[B] = PrlAnB]+ PrlAnB]= Pr[A|Pr[B|A|+ Pr[A|Pr[B|A]
(1/2)(1/2)+(1/2)0.6 = 0.55.
Thus,
priag = PAPABIAL . (1/2(1/2) 4 4

Pr[B] (1/2)(1/2)+(1/2)0.6
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A picture: fair coin
A
1/2 1/2
O B heads
1/2 0.6
A

loaded coin

Imagine 100 situations, among which
m:=100(1/2)(1/2) are such that A and B occur and
n:=100(1/2)(0.6) are such that A and B occur.

Thus, among the m+ n situations where B occurred, there are m
where A occurred.

Hence,

Al = = T2 /2 + (/206"
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Independence

Definition: Two events A and B are independent if

Pr[An B] = Pr[A]Pr[B].

Examples:

» When rolling two dice, A= sum is 7 and B =red die is 1 are
independent;

» When rolling two dice, A= sum is 3 and B = red die is 1 are not
independent;

» When flipping coins, A= coin 1 yields heads and B = coin 2
yields tails are independent;

» When throwing 3 balls into 3 bins, A= bin 1 is empty and B =
bin 2 is empty are not independent;
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Fact: Two events A and B are independent if and only if

Pr[A|B] = Pr[A].

Indeed: Pr[A|B] = ng}gf], so that

PriAN B

PrIAIB) = PriA] & —g

= Pr[A]l < Pr[An B] = Pr[A]Pr|[B].
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Another picture: We imagine that there are N possible causes
Aq,..., AN

pn = Pr[A,)
- g In= Pr[B|A,]

CA Ay, ..., Ay disjoint

An _“-‘l]U"'U_“-‘lg\; =0

Pn

PN

Imagine 100 situations, among which 100p,q, are such that A, and
Boccur, forn=1,... N.
Thus, among the 100Y.,,, pmgm situations where B occurred, there are
100p,qn where A, occurred.
Hence,

PnQn

Pr[An|B] = S oG
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Why do you have a fever?

Prior Conditional

probabilities probabilities
0.80
Flu \

.5 - e

Ebola High Fever
/l.l()
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Why do you have a fever?

Prior Conditional

probabilities probabilities
0.80
Flu \

s SRR 32

Ebola High Fever
/l.l()
Other

Using Bayes’ rule, we find

0.15 % 0.80
Pr[Flu|High Fever] — ~0.
r[FlulHigh Fever] = 65 080110 8x 1108501 ~ 00
Pr[Ebola|High Fever] — 1078 x1 ~5x1078
g T 0.15x080+10 8x14085x01
Pr[Other|High Fever] = 0.85>0.1 0.42

015x0.80110 8x1+085x01

These are the posterior probabilities. One says that ‘Flu’ is the Most Likely a
Posteriori (MAP) cause of the high fever.
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Bayes’ Rule Operations

[Environment]
Priors:
Pr[A,]

Observe B

Posteriors:

Bayes’ Rule Pr[A,|B]

Clonditional:
Pr|B|A,]
[Model of system]

Bayes’ Rule is the canonical example of how information changes our
opinions.



Thomas Bayes

Source: Wikipedia.

Thomas Bayes

Mo earlier portrait or claimed portrait survives.

Born c. 1701
Londen, England
Died 7 April 1761 (aged 59)

Tunbridge Wells, Kent, England
Residence Tunbridge Wells, Kent, England
Nationality English

Known for Bayes' theorem




Thomas Bayes

FiG. 3. Joshua Bayes (1671-1746). Thomas Bayes?

A Bayesian picture of Thomas Bayes.
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Testing for disease.

Let’'s watch TV!I

Random Experiment: Pick a random male.
Outcomes: (test,disease)

A - prostate cancer.

B - positive PSA test.

> Pr[A] =0.0016, (.16 % of the male population is affected.)
> Pr[B|A] = 0.80 (80% chance of positive test with disease.)
» Pr[B|A] =0.10 (10% chance of positive test without disease.)

From http://www.cpcn.org/01_psa_tests.htm and
http://seer.cancer.gov/statfacts/html/prost.html (10/12/2011.)

Positive PSA test (B). Do | have disease?

Pr{A|B|???



Bayes Rule.

0.0016 A 080
B

A /[:.10

0.9984



Bayes Rule.

0.0016 A \(l 0

/ ).10

0. 9984

Using Bayes’ rule, we find



Bayes Rule.

{},(){mi . A (080
ol B

. ﬂ
- -
0.9984 % A 7010

Using Bayes’ rule, we find

0.0016 x 0.80

PIAB] =
48] 0.0016 x 0.80+0.9984 x 0.10




Bayes Rule.

{},(){mi . A (080
ol B

. ﬂ
- -
0.9984 % A 7010

Using Bayes’ rule, we find

0.0016 x 0.80 o1

P[A|B] = =
48] 0.0016 x 0.80+0.9984 x 0.10




Bayes Rule.

{}.(){}l{ﬂiﬂ LA (080
o b

p
- -
0.0984 * A 7010

Using Bayes’ rule, we find

0.0016 x 0.80 o1

PIAIB] = 0.0016 x 0.80+0.9984 x 0.10

A 1.3% chance of prostate cancer with a positive PSA test.



Bayes Rule.

{}.(){}l{ﬂiﬂ. A (080
ol B

p
- -
0.0984 * A 7010

Using Bayes’ rule, we find

0.0016 x 0.80 o1

PIAIB] = 0.0016 x 0.80+0.9984 x 0.10

A 1.3% chance of prostate cancer with a positive PSA test.
Surgery anyone?



Bayes Rule.

{}.(){}l{ﬂiﬂ. A (080
ol B

p
- -
0.0984 * A 7010

Using Bayes’ rule, we find

0.0016 x 0.80 o1

PIAIB] = 0.0016 x 0.80+0.9984 x 0.10

A 1.3% chance of prostate cancer with a positive PSA test.
Surgery anyone?

Impotence...



Bayes Rule.

{}.(){}l{ﬂiﬂ. A (080
ol B

0.9984 * A70.10

Using Bayes’ rule, we find

0.0016 x 0.80 o1

PIAIB] = 0.0016 x 0.80+0.9984 x 0.10

A 1.3% chance of prostate cancer with a positive PSA test.
Surgery anyone?
Impotence...

Incontinence..



Bayes Rule.

{}.(){}l{ﬂiﬂ. A (080
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0.9984 * A70.10

Using Bayes’ rule, we find

0.0016 x 0.80 o1

PIAIB] = 0.0016 x 0.80+0.9984 x 0.10

A 1.3% chance of prostate cancer with a positive PSA test.
Surgery anyone?

Impotence...

Incontinence..

Death.



Summary

’ Events, Conditional Probability, Independence, Bayes’ Rule




Summary

’ Events, Conditional Probability, Independence, Bayes’ Rule

Key Ideas:

» Conditional Probability:
PriA|B) = )




Summary

’ Events, Conditional Probability, Independence, Bayes’ Rule

Key Ideas:
» Conditional Probability:
PrlA1B] = ZHa5P
> Independence: Pr[AN B] = Pr[A]Pr[B].




Summary

‘ Events, Conditional Probability, Independence, Bayes’ Rule

Key Ideas:
» Conditional Probability:
PrlA1B] = ZHa5P
> Independence: Pr[AN B] = Pr[A]Pr[B].

» Bayes’ Rule:

Pr{An]Pr[B|A,]
Lm Pr{Am] Pr[B|Am]

Pr[An|B] =



Summary

‘ Events, Conditional Probability, Independence, Bayes’ Rule

Key Ideas:
» Conditional Probability:
PrlA1B] = ZHa5P
> Independence: Pr[AN B] = Pr[A]Pr[B].

» Bayes’ Rule:

Pr{An]Pr[B|A,]
Lm Pr{Am] Pr[B|Am]

Pr[An|B] =

Pr[An|B] = posterior probability; Pr[A,] = prior probability .



Summary

‘ Events, Conditional Probability, Independence, Bayes’ Rule

Key Ideas:
» Conditional Probability:
PrlA1B] = ZHa5P
> Independence: Pr[AN B] = Pr[A]Pr[B].

» Bayes’ Rule:

Pr{An]Pr[B|A,]
Lm Pr{Am] Pr[B|Am]

Pr[An|B] =

Pr[An|B] = posterior probability; Pr[A,] = prior probability .

» All these are possible:
Pr[A|B] < Pr[A]; Pr[A|B] > Pr[A]; Pr[A|B] = Pr[A].



