
Lecture 16: Continuing Probability.

Wrap up: Probability Formalism.

Events, Conditional Probability, Independence, Bayes’ Rule

Probability Space: Formalism
Simplest physical model of a uniform probability space:

Red
Green

Maroon

⌦

1/8
1/8
...
1/8

Pr[!]

...

Physical experiment Probability model

A bag of identical balls, except for their color (or a label). If the bag is
well shaken, every ball is equally likely to be picked.

Ω = {white, red, yellow, grey, purple, blue, maroon, green}
Pr [blue] =

1
8
.

Probability Space: Formalism
Simplest physical model of a non-uniform probability space:

Red
Green
Yellow
Blue

⌦

3/10
4/10
2/10
1/10

Pr[!]

Physical experiment Probability model

Ω = {Red, Green, Yellow, Blue}
Pr [Red] =

3
10

,Pr [Green] =
4
10

, etc.

Note: Probabilities are restricted to rational numbers: Nk
N .

Probability Space: Formalism
Physical model of a general non-uniform probability space:

p3

Fraction p1
of circumference

p2

p!

!

12

3

Physical experiment Probability model

Purple = 2
Green = 1

Yellow 

⌦
Pr[!]

...

p1
p2

p!
. . .

!

The roulette wheel stops in sector ω with probability pω .

Ω = {1,2,3, . . . ,N},Pr [ω] = pω .

An important remark

I The random experiment selects one and only one outcome in Ω.

I For instance, when we flip a fair coin twice

I Ω = {HH,TH,HT ,TT}
I The experiment selects one of the elements of Ω.

I In this case, its wrong to think that Ω = {H,T} and that the
experiment selects two outcomes.

I Why? Because this would not describe how the two coin flips
are related to each other.

I For instance, say we glue the coins side-by-side so that they
face up the same way. Then one gets HH or TT with probability
50% each. This is not captured by ‘picking two outcomes.’

Lecture 15: Summary

Modeling Uncertainty: Probability Space

1. Random Experiment

2. Probability Space: Ω;Pr [ω] ∈ [0,1];∑ω Pr [ω] = 1.

3. Uniform Probability Space: Pr [ω] = 1/|Ω| for all ω ∈ Ω.



CS70: On to Calculation.
Events, Conditional Probability, Independence, Bayes’ Rule

1. Probability Basics Review

2. Events

3. Conditional Probability

4. Independence of Events

5. Bayes’ Rule

Probability Basics Review

Setup:

I Random Experiment.
Flip a fair coin twice.

I Probability Space.

I Sample Space: Set of outcomes, Ω.
Ω = {HH,HT ,TH,TT}
(Note: Not Ω = {H,T} with two picks!)

I Probability: Pr [ω] for all ω ∈ Ω.
Pr [HH] = · · ·= Pr [TT ] = 1/4

1. 0≤ Pr [ω]≤ 1.
2. ∑ω∈Ω Pr [ω] = 1.

Set notation review

A B

⌦

Figure : Two events

⌦

Ā

Figure : Complement
(not)

⌦

A [B

Figure : Union (or)

⌦

A \B

Figure : Intersection
(and)

⌦

A \B

Figure : Difference (A,
not B)

⌦

A�B

Figure : Symmetric
difference (only one)

Probability of exactly one ‘heads’ in two coin flips?
Idea: Sum the probabilities of all the different outcomes that have
exactly one ‘heads’: HT ,TH.

This leads to a definition!
Definition:

I An event, E , is a subset of outcomes: E ⊂ Ω.

I The probability of E is defined as Pr [E ] = ∑ω∈E Pr [ω].

Event: Example

Red
Green
Yellow
Blue

⌦

3/10
4/10
2/10
1/10

Pr[!]

Physical experiment Probability model

Ω = {Red, Green, Yellow, Blue}
Pr [Red] =

3
10

,Pr [Green] =
4
10

, etc.

E = {Red ,Green}⇒Pr [E ] =
3 + 4
10

=
3
10

+
4
10

= Pr [Red]+Pr [Green].

Probability of exactly one heads in two coin flips?

Sample Space, Ω = {HH,HT ,TH,TT}.
Uniform probability space: Pr [HH] = Pr [HT ] = Pr [TH] = Pr [TT ] = 1

4 .

Event, E , “exactly one heads”: {TH,HT}.

Pr [E ] = ∑
ω∈E

Pr [ω] =
|E |
|Ω| =

2
4

=
1
2
.



Example: 20 coin tosses.
20 coin tosses

Sample space: Ω = set of 20 fair coin tosses.
Ω = {T ,H}20 ≡ {0,1}20; |Ω|= 220.

I What is more likely?
I ω1 := (1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1), or
I ω2 := (1,0,1,1,0,0,0,1,0,1,0,1,1,0,1,1,1,0,0,0)?

Answer: Both are equally likely: Pr [ω1] = Pr [ω2] = 1
|Ω| .

I What is more likely?

(E1) Twenty Hs out of twenty, or
(E2) Ten Hs out of twenty?

Answer: Ten Hs out of twenty.

Why? There are many sequences of 20 tosses with ten Hs;
only one with twenty Hs. ⇒ Pr [E1] = 1

|Ω| � Pr [E2] = |E2|
|Ω| .

|E2|=
(

20
10

)
= 184,756.

Probability of n heads in 100 coin tosses.

Ω = {H,T}100; |Ω|= 2100.

n

pn

Event En = ‘n heads’; |En|=
(100

n

)

pn := Pr [En] = |En|
|Ω| =

(100
n )

2100

Observe:

I Concentration around mean:
Law of Large Numbers;

I Bell-shape: Central Limit
Theorem.

Roll a red and a blue die.

Exactly 50 heads in 100 coin tosses.

Sample space: Ω = set of 100 coin tosses = {H,T}100.
|Ω|= 2×2×·· ·×2 = 2100.

Uniform probability space: Pr [ω] = 1
2100 .

Event E = “100 coin tosses with exactly 50 heads”

|E |?
Choose 50 positions out of 100 to be heads.
|E |=

(100
50

)
.

Pr [E ] =

(100
50

)

2100 .

Calculation.
Stirling formula (for large n):

n!≈
√

2πn
(n

e

)n
.

(
2n
n

)
≈
√

4πn(2n/e)2n

[
√

2πn(n/e)n]2
≈ 4n
√

πn
.

Pr [E ] =
|E |
|Ω| =

|E |
22n =

1√
πn

=
1√
50π

≈ .08.

Exactly 50 heads in 100 coin tosses.



Probability is Additive

Theorem

(a) If events A and B are disjoint, i.e., A∩B = /0, then

Pr [A∪B] = Pr [A] + Pr [B].

(b) If events A1, . . . ,An are pairwise disjoint,
i.e., Ak ∩Am = /0,∀k 6= m, then

Pr [A1∪·· ·∪An] = Pr [A1] + · · ·+ Pr [An].

Proof:

Obvious.

Consequences of Additivity
Theorem

(a) Pr [A∪B] = Pr [A] + Pr [B]−Pr [A∩B];

(inclusion-exclusion property)

(b) Pr [A1∪·· ·∪An]≤ Pr [A1] + · · ·+ Pr [An];

(union bound)

(c) If A1, . . .AN are a partition of Ω, i.e.,

pairwise disjoint and ∪N
m=1Am = Ω, then

Pr [B] = Pr [B∩A1] + · · ·+ Pr [B∩AN ].

(law of total probability)

Proof:

(b) is obvious.

Proofs for (a) and (c)? Next...

Inclusion/Exclusion

Pr [A∪B] = Pr [A] + Pr [B]−Pr [A∩B]

Another view. Any ω ∈ A∪B is in A∩B, A∪B, or A∩B. So, add it up.

Total probability

Assume that Ω is the union of the disjoint sets A1, . . . ,AN .

Then,
Pr [B] = Pr [A1∩B] + · · ·+ Pr [AN ∩B].

Indeed, B is the union of the disjoint sets An ∩B for n = 1, . . . ,N.

In “math”: ω ∈ B is in exactly one of Ai ∩B.

Adding up probability of them, get Pr [ω] in sum.

..Did I say...

Add it up.

Roll a Red and a Blue Die.

E1 = ‘Red die shows 6’;E2 = ‘Blue die shows 6’
E1∪E2 = ‘At least one die shows 6’

Pr [E1] =
6
36

,Pr [E2] =
6
36

,Pr [E1∪E2] =
11
36

.

Conditional probability: example.

Two coin flips. First flip is heads. Probability of two heads?
Ω = {HH,HT ,TH,TT}; Uniform probability space.
Event A = first flip is heads: A = {HH,HT}.

New sample space: A; uniform still.

Event B = two heads.

The probability of two heads if the first flip is heads.
The probability of B given A is 1/2.



A similar example.
Two coin flips. At least one of the flips is heads.
→ Probability of two heads?

Ω = {HH,HT ,TH,TT}; uniform.
Event A = at least one flip is heads. A = {HH,HT ,TH}.

New sample space: A; uniform still.

Event B = two heads.

The probability of two heads if at least one flip is heads.
The probability of B given A is 1/3.

Conditional Probability: A non-uniform example

Red
Green
Yellow
Blue

⌦

3/10
4/10
2/10
1/10

Pr[!]

Physical experiment Probability model

Ω = {Red, Green, Yellow, Blue}
Pr [Red|Red or Green] =

3
7

=
Pr [Red∩ (Red or Green)]

Pr [Red or Green]

Another non-uniform example
Consider Ω = {1,2, . . . ,N} with Pr [n] = pn.
Let A = {3,4},B = {1,2,3}.

Pr [A|B] =
p3

p1 + p2 + p3
=

Pr [A∩B]

Pr [B]
.

Yet another non-uniform example
Consider Ω = {1,2, . . . ,N} with Pr [n] = pn.
Let A = {2,3,4},B = {1,2,3}.

Pr [A|B] =
p2 + p3

p1 + p2 + p3
=

Pr [A∩B]

Pr [B]
.

Conditional Probability.

Definition: The conditional probability of B given A is

Pr [B|A] =
Pr [A∩B]

Pr [A]

A BA B
In A!
In B?

Must be in A∩B.

A∩B

Pr [B|A] = Pr [A∩B]
Pr [A] .

More fun with conditional probability.

Toss a red and a blue die, sum is 4,
What is probability that red is 1?

Pr [B|A] = |B∩A|
|A| = 1

3 ; versus Pr [B] = 1/6.

B is more likely given A.



Yet more fun with conditional probability.
Toss a red and a blue die, sum is 7,
what is probability that red is 1?

Pr [B|A] = |B∩A|
|A| = 1

6 ; versus Pr [B] = 1
6 .

Observing A does not change your mind about the likelihood of B.

Emptiness..

Suppose I toss 3 balls into 3 bins.
A =“1st bin empty”; B =“2nd bin empty.” What is Pr [A|B]?

Pr [B] = Pr [{(a,b,c) | a,b,c ∈ {1,3}] = Pr [{1,3}3] = 8
27

Pr [A∩B] = Pr [(3,3,3)] = 1
27

Pr [A|B] = Pr [A∩B]
Pr [B] = (1/27)

(8/27)
= 1/8; vs. Pr [A] = 8

27 .

A is less likely given B: If second bin is empty the first is more likely to
have balls in it.

Gambler’s fallacy.

Flip a fair coin 51 times.
A = “first 50 flips are heads”
B = “the 51st is heads”
Pr [B|A] ?

A = {HH · · ·HT ,HH · · ·HH}
B∩A = {HH · · ·HH}
Uniform probability space.

Pr [B|A] = |B∩A|
|A| = 1

2 .

Same as Pr [B].

The likelihood of 51st heads does not depend on the previous flips.

Product Rule

Recall the definition:

Pr [B|A] =
Pr [A∩B]

Pr [A]
.

Hence,
Pr [A∩B] = Pr [A]Pr [B|A].

Consequently,

Pr [A∩B∩C] = Pr [(A∩B)∩C]

= Pr [A∩B]Pr [C|A∩B]

= Pr [A]Pr [B|A]Pr [C|A∩B].

Product Rule

Theorem Product Rule
Let A1,A2, . . . ,An be events. Then

Pr [A1∩·· ·∩An] = Pr [A1]Pr [A2|A1] · · ·Pr [An|A1∩·· ·∩An−1].

Proof: By induction.
Assume the result is true for n. (It holds for n = 2.) Then,

Pr [A1∩·· ·∩An ∩An+1]

= Pr [A1∩·· ·∩An]Pr [An+1|A1∩·· ·∩An]

= Pr [A1]Pr [A2|A1] · · ·Pr [An|A1∩·· ·∩An−1]Pr [An+1|A1∩·· ·∩An],

so that the result holds for n + 1.

Correlation

An example.
Random experiment: Pick a person at random.
Event A: the person has lung cancer.
Event B: the person is a heavy smoker.

Fact:
Pr [A|B] = 1.17×Pr [A].

Conclusion:

I Smoking increases the probability of lung cancer by 17%.

I Smoking causes lung cancer.



Correlation

Event A: the person has lung cancer. Event B: the person is a heavy
smoker. Pr [A|B] = 1.17×Pr [A].

A second look.

Note that

Pr [A|B] = 1.17×Pr [A] ⇔ Pr [A∩B]

Pr [B]
= 1.17×Pr [A]

⇔ Pr [A∩B] = 1.17×Pr [A]Pr [B]

⇔ Pr [B|A] = 1.17×Pr [B].

Conclusion:

I Lung cancer increases the probability of smoking by 17%.

I Lung cancer causes smoking. Really?

Causality vs. Correlation
Events A and B are positively correlated if

Pr [A∩B] > Pr [A]Pr [B].

(E.g., smoking and lung cancer.)

A and B being positively correlated does not mean that A causes B or
that B causes A.

Other examples:

I Tesla owners are more likely to be rich. That does not mean that
poor people should buy a Tesla to get rich.

I People who go to the opera are more likely to have a good
career. That does not mean that going to the opera will improve
your career.

I Rabbits eat more carrots and do not wear glasses. Are carrots
good for eyesight?

Proving Causality

Proving causality is generally difficult. One has to eliminate external
causes of correlation and be able to test the cause/effect relationship
(e.g., randomized clinical trials).

Some difficulties:

I A and B may be positively correlated because they have a
common cause. (E.g., being a rabbit.)

I If B precedes A, then B is more likely to be the cause. (E.g.,
smoking.) However, they could have a common cause that
induces B before A. (E.g., smart, CS70, Tesla.)

More about such questions later. For fun, check “N. Taleb: Fooled by
randomness.”

Total probability

Assume that Ω is the union of the disjoint sets A1, . . . ,AN .

Then,
Pr [B] = Pr [A1∩B] + · · ·+ Pr [AN ∩B].

Indeed, B is the union of the disjoint sets An∩B for n = 1, . . . ,N. Thus,

Pr [B] = Pr [A1]Pr [B|A1] + · · ·+ Pr [AN ]Pr [B|AN ].

Total probability

Assume that Ω is the union of the disjoint sets A1, . . . ,AN .

Pr [B] = Pr [A1]Pr [B|A1] + · · ·+ Pr [AN ]Pr [B|AN ].

Is you coin loaded?
Your coin is fair w.p. 1/2 or such that Pr [H] = 0.6, otherwise.

You flip your coin and it yields heads.

What is the probability that it is fair?

Analysis:

A = ‘coin is fair’,B = ‘outcome is heads’

We want to calculate P[A|B].

We know P[B|A] = 1/2,P[B|Ā] = 0.6,Pr [A] = 1/2 = Pr [Ā]

Now,

Pr [B] = Pr [A∩B] + Pr [Ā∩B] = Pr [A]Pr [B|A] + Pr [Ā]Pr [B|Ā]

= (1/2)(1/2) + (1/2)0.6 = 0.55.

Thus,

Pr [A|B] =
Pr [A]Pr [B|A]

Pr [B]
=

(1/2)(1/2)

(1/2)(1/2) + (1/2)0.6
≈ 0.45.



Is you coin loaded?
A picture:

Imagine 100 situations, among which
m := 100(1/2)(1/2) are such that A and B occur and
n := 100(1/2)(0.6) are such that Ā and B occur.

Thus, among the m + n situations where B occurred, there are m
where A occurred.

Hence,

Pr [A|B] =
m

m + n
=

(1/2)(1/2)

(1/2)(1/2) + (1/2)0.6
.

Independence

Definition: Two events A and B are independent if

Pr [A∩B] = Pr [A]Pr [B].

Examples:

I When rolling two dice, A = sum is 7 and B = red die is 1 are
independent;

I When rolling two dice, A = sum is 3 and B = red die is 1 are not
independent;

I When flipping coins, A = coin 1 yields heads and B = coin 2
yields tails are independent;

I When throwing 3 balls into 3 bins, A = bin 1 is empty and B =
bin 2 is empty are not independent;

Independence and conditional probability

Fact: Two events A and B are independent if and only if

Pr [A|B] = Pr [A].

Indeed: Pr [A|B] = Pr [A∩B]
Pr [B] , so that

Pr [A|B] = Pr [A]⇔ Pr [A∩B]

Pr [B]
= Pr [A]⇔ Pr [A∩B] = Pr [A]Pr [B].

Bayes Rule
Another picture: We imagine that there are N possible causes
A1, . . . ,AN .

Imagine 100 situations, among which 100pnqn are such that An and
B occur, for n = 1, . . . ,N.
Thus, among the 100∑m pmqm situations where B occurred, there are
100pnqn where An occurred.

Hence,
Pr [An|B] =

pnqn

∑m pmqm
.

Why do you have a fever?

Using Bayes’ rule, we find

Pr [Flu|High Fever] =
0.15×0.80

0.15×0.80+10−8×1+0.85×0.1
≈ 0.58

Pr [Ebola|High Fever] =
10−8×1

0.15×0.80+10−8×1+0.85×0.1
≈ 5×10−8

Pr [Other|High Fever] =
0.85×0.1

0.15×0.80+10−8×1+0.85×0.1
≈ 0.42

These are the posterior probabilities. One says that ‘Flu’ is the Most Likely a
Posteriori (MAP) cause of the high fever.

Bayes’ Rule Operations

Bayes’ Rule is the canonical example of how information changes our
opinions.



Thomas Bayes

Source: Wikipedia.

Thomas Bayes

A Bayesian picture of Thomas Bayes.

Testing for disease.

Let’s watch TV!!
Random Experiment: Pick a random male.
Outcomes: (test ,disease)
A - prostate cancer.
B - positive PSA test.

I Pr [A] = 0.0016, (.16 % of the male population is affected.)

I Pr [B|A] = 0.80 (80% chance of positive test with disease.)

I Pr [B|A] = 0.10 (10% chance of positive test without disease.)

From http://www.cpcn.org/01 psa tests.htm and
http://seer.cancer.gov/statfacts/html/prost.html (10/12/2011.)

Positive PSA test (B). Do I have disease?

Pr [A|B]???

Bayes Rule.

Using Bayes’ rule, we find

P[A|B] =
0.0016×0.80

0.0016×0.80 + 0.9984×0.10
= .013.

A 1.3% chance of prostate cancer with a positive PSA test.

Surgery anyone?

Impotence...

Incontinence..

Death.

Summary

Events, Conditional Probability, Independence, Bayes’ Rule

Key Ideas:

I Conditional Probability:

Pr [A|B] = Pr [A∩B]
Pr [B]

I Independence: Pr [A∩B] = Pr [A]Pr [B].

I Bayes’ Rule:

Pr [An|B] =
Pr [An]Pr [B|An]

∑m Pr [Am]Pr [B|Am]
.

Pr [An|B] = posterior probability;Pr [An] = prior probability .

I All these are possible:

Pr [A|B] < Pr [A];Pr [A|B] > Pr [A];Pr [A|B] = Pr [A].


